These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 19667172)

  • 1. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers.
    Liu Y; Rafailovich MH; Malal R; Cohn D; Chidambaram D
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14201-6. PubMed ID: 19667172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the electrochemical interface as a result of the growth of Pseudomonas fluorescens biofilms on gold.
    Busalmen JP; de Sánchez SR
    Biotechnol Bioeng; 2003 Jun; 82(5):619-24. PubMed ID: 12652486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil.
    Baum MM; Kainović A; O'Keeffe T; Pandita R; McDonald K; Wu S; Webster P
    BMC Microbiol; 2009 May; 9():103. PubMed ID: 19460161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Spray-Dried Polymer/Bacteria Microparticles for Electrospinning of Composite Nonwovens.
    Reich S; Kaiser P; Mafi M; Schmalz H; Rhinow D; Freitag R; Greiner A
    Macromol Biosci; 2019 May; 19(5):e1800356. PubMed ID: 30840362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms.
    Simões M; Pereira MO; Sillankorva S; Azeredo J; Vieira MJ
    Biofouling; 2007; 23(3-4):249-58. PubMed ID: 17653934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer/bacteria composite nanofiber non-wovens by electrospinning of living bacteria protected by hydrogel microparticles.
    Gensheimer M; Brandis-Heep A; Agarwal S; Thauer RK; Greiner A
    Macromol Biosci; 2011 Mar; 11(3):333-7. PubMed ID: 21243634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of flow regime on the architecture of a Pseudomonas fluorescens biofilm.
    Pereira MO; Kuehn M; Wuertz S; Neu T; Melo LF
    Biotechnol Bioeng; 2002 Apr; 78(2):164-71. PubMed ID: 11870607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and biochemical changes in Pseudomonas fluorescens biofilms induced by sub-inhibitory exposure to antimicrobial agents.
    Dynes JJ; Lawrence JR; Korber DR; Swerhone GD; Leppard GG; Hitchcock AP
    Can J Microbiol; 2009 Feb; 55(2):163-78. PubMed ID: 19295649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.
    Botyanszki Z; Tay PK; Nguyen PQ; Nussbaumer MG; Joshi NS
    Biotechnol Bioeng; 2015 Oct; 112(10):2016-24. PubMed ID: 25950512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalizing electrospun fibers with biologically relevant macromolecules.
    Casper CL; Yamaguchi N; Kiick KL; Rabolt JF
    Biomacromolecules; 2005; 6(4):1998-2007. PubMed ID: 16004438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs.
    Weidenbacher L; Abrishamkar A; Rottmar M; Guex AG; Maniura-Weber K; deMello AJ; Ferguson SJ; Rossi RM; Fortunato G
    Acta Biomater; 2017 Dec; 64():137-147. PubMed ID: 29030306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation.
    Qayyum AS; Jain E; Kolar G; Kim Y; Sell SA; Zustiak SP
    Biofabrication; 2017 May; 9(2):025019. PubMed ID: 28516893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the behaviour of Pseudomonas fluorescens biofilms after Ortho-phthalaldehyde treatment.
    Simões M; Carvalho H; Pereira MO; Vieira MJ
    Biofouling; 2003 Jun; 19(3):151-7. PubMed ID: 14619283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Fish-in-net", a novel method for cell immobilization of Zymomonas mobilis.
    Niu X; Wang Z; Li Y; Zhao Z; Liu J; Jiang L; Xu H; Li Z
    PLoS One; 2013; 8(11):e79569. PubMed ID: 24236145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A.
    Sillankorva S; Neubauer P; Azeredo J
    BMC Biotechnol; 2008 Oct; 8():79. PubMed ID: 18954451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of hydrodynamic stress on the phenotypic characteristics of single and binary biofilms of Pseudomonas fluorescens.
    Simões M; Pereira MO; Vieira MJ
    Water Sci Technol; 2007; 55(8-9):437-45. PubMed ID: 17547015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms.
    Simões M; Simoes LC; Pereira MO; Vieira MJ
    Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers.
    Weldrick PJ; Hardman MJ; Paunov VN
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):43902-43919. PubMed ID: 31718141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiofilm Effect of Poly(Vinyl Alcohol-
    Cossu A; Si Y; Sun G; Nitin N
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28802271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of immobilization on biosensor for benzene derivates detection].
    Tang K; Ma AZ; Yu Q; Deng XM; Lü D; Zhuang GQ
    Huan Jing Ke Xue; 2013 Feb; 34(2):760-6. PubMed ID: 23668152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.