These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19667177)

  • 1. Bioelectronic silicon nanowire devices using functional membrane proteins.
    Misra N; Martinez JA; Huang SC; Wang Y; Stroeve P; Grigoropoulos CP; Noy A
    Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13780-4. PubMed ID: 19667177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional integration of membrane proteins with nanotube and nanowire transistor devices.
    Noy A; Artyukhin AB; Huang SC; Martinez JA; Misra N
    Methods Mol Biol; 2011; 751():533-52. PubMed ID: 21674353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic control of H
    Hemmatian Z; Keene S; Josberger E; Miyake T; Arboleda C; Soto-Rodríguez J; Baneyx F; Rolandi M
    Nat Commun; 2016 Oct; 7():12981. PubMed ID: 27713411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charging the quantum capacitance of graphene with a single biological ion channel.
    Wang YY; Pham TD; Zand K; Li J; Burke PJ
    ACS Nano; 2014 May; 8(5):4228-38. PubMed ID: 24754625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors.
    Yin P; Burns CJ; Osman PD; Cornell BA
    Biosens Bioelectron; 2003 Apr; 18(4):389-97. PubMed ID: 12604256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectronic light-gated transistors with biologically tunable performance.
    Tunuguntla RH; Bangar MA; Kim K; Stroeve P; Grigoropoulos C; Ajo-Franklin CM; Noy A
    Adv Mater; 2015 Feb; 27(5):831-6. PubMed ID: 25410490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of voltage-gated alamethicin pores in a reconstituted bilayer lipid membrane via scanning electrochemical microscopy.
    Wilburn JP; Wright DW; Cliffel DE
    Analyst; 2006 Feb; 131(2):311-6. PubMed ID: 16440098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient biocompatible single silicon nanowire electrodes with functional biological pore channels.
    Martinez JA; Misra N; Wang Y; Stroeve P; Grigoropoulos CP; Noy A
    Nano Lett; 2009 Mar; 9(3):1121-6. PubMed ID: 19203205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes.
    Urisu T; Rahman MM; Uno H; Tero R; Nonogaki Y
    Nanomedicine; 2005 Dec; 1(4):317-22. PubMed ID: 17292105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces.
    Atanasov V; Knorr N; Duran RS; Ingebrandt S; Offenhäusser A; Knoll W; Köper I
    Biophys J; 2005 Sep; 89(3):1780-8. PubMed ID: 16127170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina.
    Römer W; Steinem C
    Biophys J; 2004 Feb; 86(2):955-65. PubMed ID: 14747331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models and simulations of ion channels and related membrane proteins.
    Sansom MS
    Curr Opin Struct Biol; 1998 Apr; 8(2):237-44. PubMed ID: 9631299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements.
    Garnett EC; Tseng YC; Khanal DR; Wu J; Bokor J; Yang P
    Nat Nanotechnol; 2009 May; 4(5):311-4. PubMed ID: 19421217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues.
    Duclohier H; Wróblewski H
    J Membr Biol; 2001 Nov; 184(1):1-12. PubMed ID: 11687873
    [No Abstract]   [Full Text] [Related]  

  • 16. Model ion channels: gramicidin and alamethicin.
    Woolley GA; Wallace BA
    J Membr Biol; 1992 Aug; 129(2):109-36. PubMed ID: 1279177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of single ion channel activity on a chip using tethered bilayer membranes.
    Andersson M; Keizer HM; Zhu C; Fine D; Dodabalapur A; Duran RS
    Langmuir; 2007 Mar; 23(6):2924-7. PubMed ID: 17286424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alamethicin channel conductance modified by lipid charge.
    Aguilella VM; Bezrukov SM
    Eur Biophys J; 2001 Aug; 30(4):233-41. PubMed ID: 11548125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.