BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19667181)

  • 1. Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering.
    Leona M
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14757-62. PubMed ID: 19667181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy.
    Casadio F; Leona M; Lombardi JR; Van Duyne R
    Acc Chem Res; 2010 Jun; 43(6):782-91. PubMed ID: 20420359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies.
    Ropret P; Centeno SA; Bukovec P
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):486-97. PubMed ID: 17590389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sample treatment considerations in the analysis of organic colorants by surface-enhanced Raman scattering.
    Pozzi F; Lombardi JR; Bruni S; Leona M
    Anal Chem; 2012 Apr; 84(8):3751-7. PubMed ID: 22462391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Romano-British wall paintings: Raman spectroscopic analysis of fragments from two urban sites of early military colonisation.
    Edwards HG; Middleton PS; Hargreaves MD
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):553-60. PubMed ID: 19070538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.
    Mayhew HE; Fabian DM; Svoboda SA; Wustholz KL
    Analyst; 2013 Aug; 138(16):4493-9. PubMed ID: 23722232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances on the Analysis of Polychrome Works of Art: SERS of Synthetic Colorants and Their Mixtures With Natural Dyes.
    Cesaratto A; Leona M; Pozzi F
    Front Chem; 2019; 7():105. PubMed ID: 30886843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical Raman spectroscopic discrimination between yellow pigments of the Renaissance.
    Edwards HG
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):14-20. PubMed ID: 21296610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytical Raman spectroscopic study of an important english oil painting of the 18th Century.
    Edwards HG; Vandenabeele P; Jehlicka J; Benoy TJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():598-602. PubMed ID: 24095770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic Raman spectroscopy for the forensic detection of biomaterials and the preservation of cultural heritage.
    Edwards HG; Munshi T
    Anal Bioanal Chem; 2005 Jul; 382(6):1398-406. PubMed ID: 15952003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy of archaeological and ancient resins: problems with database construction for applications in conservation and historical provenancing.
    Edwards HG; Ali EM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):49-54. PubMed ID: 21782495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wall paintings studied using Raman spectroscopy: a comparative study between various assays of cross sections and external layers.
    Perez-Rodriguez JL; Robador MD; Centeno MA; Siguenza B; Duran A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():602-9. PubMed ID: 24216251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micellar electrokinetic chromatography method for the determination of several natural red dyestuff and lake pigments used in art work.
    Maguregui MI; Alonso RM; Barandiaran M; Jimenez RM; García N
    J Chromatogr A; 2007 Jun; 1154(1-2):429-36. PubMed ID: 17452040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints.
    Striová J; Coccolini G; Micheli S; Lofrumento C; Galeotti M; Cagnini A; Castellucci EM
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):539-45. PubMed ID: 19081288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering.
    Leona M; Decuzzi P; Kubic TA; Gates G; Lombardi JR
    Anal Chem; 2011 Jun; 83(11):3990-3. PubMed ID: 21524144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of methyl green using surface-enhanced resonance Raman scattering.
    Shadi IT; Cheung W; Goodacre R
    Anal Bioanal Chem; 2009 Aug; 394(7):1833-8. PubMed ID: 19544054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigment identification on "Pietà" of Barletta, example of Renaissance Apulian sculpture: a Raman microscopy study.
    Marano D; Catalano IM; Monno A
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Aug; 64(5):1147-50. PubMed ID: 16527525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromic materials for responsive surface-enhanced resonance Raman scattering systems: a nanometric pH sensor.
    Ando RA; Pieczonka NP; Santos PS; Aroca RF
    Phys Chem Chem Phys; 2009 Sep; 11(34):7505-8. PubMed ID: 19690726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-Raman spectroscopy and X-ray fluorescence spectrometry on the characterization of the Persian pigments used in the pre-seventeenth century wall paintings of Masjid-i Jāme of Abarqū, central Iran.
    Holakooei P; Karimy AH
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():419-27. PubMed ID: 25025315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-Raman analysis of the pigments on painted pottery figurines from two tombs of the Northern Wei Dynasty in Luoyang.
    Liu Z; Han Y; Han L; Cheng Y; Ma Y; Fang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():42-6. PubMed ID: 23501716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.