BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19667240)

  • 1. p27kip1-838C>A single nucleotide polymorphism is associated with restenosis risk after coronary stenting and modulates p27kip1 promoter activity.
    van Tiel CM; Bonta PI; Rittersma SZ; Beijk MA; Bradley EJ; Klous AM; Koch KT; Baas F; Jukema JW; Pons D; Sampietro ML; Pannekoek H; de Winter RJ; de Vries CJ
    Circulation; 2009 Aug; 120(8):669-76. PubMed ID: 19667240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear receptor Nurr1 is expressed in and is associated with human restenosis and inhibits vascular lesion formation in mice involving inhibition of smooth muscle cell proliferation and inflammation.
    Bonta PI; Pols TW; van Tiel CM; Vos M; Arkenbout EK; Rohlena J; Koch KT; de Maat MP; Tanck MW; de Winter RJ; Pannekoek H; Biessen EA; Bot I; de Vries CJ
    Circulation; 2010 May; 121(18):2023-32. PubMed ID: 20421523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allelic variant at -79 (C>T) in CDKN1B (p27Kip1) confers an increased risk of thyroid cancer and alters mRNA levels.
    Landa I; Montero-Conde C; Malanga D; De Gisi S; Pita G; Leandro-García LJ; Inglada-Pérez L; Letón R; De Marco C; Rodríguez-Antona C; Viglietto G; Robledo M
    Endocr Relat Cancer; 2010 Jun; 17(2):317-28. PubMed ID: 20075119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P27 and P53 gene polymorphisms and restenosis following coronary implantation of drug-eluting stents.
    Tiroch K; Koch W; Mehilli J; Bottiger C; Schomig A; Kastrati A
    Cardiology; 2009; 112(4):263-9. PubMed ID: 18758183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intron 6 G/T polymorphism of c-myb oncogene and the risk for coronary in-stent restenosis.
    Gross CM; Krämer J; Pfeufer A; Dietz R; Gessner R; Praus M
    Basic Res Cardiol; 2004 Jul; 99(4):309-14. PubMed ID: 15221349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the cell-cycle inhibitors p27(Kip1) and p21(Cip1) in human atherectomy specimens: primary stenosis versus restenosis.
    Braun-Dullaeus RC; Ziegler A; Bohle RM; Bauer E; Hein S; Tillmanns H; Haberbosch W
    J Lab Clin Med; 2003 Mar; 141(3):179-89. PubMed ID: 12624599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single-nucleotide polymorphism in the human p27kip1 gene (-838C>A) affects basal promoter activity and the risk of myocardial infarction.
    González P; Díez-Juan A; Coto E; Alvarez V; Reguero JR; Batalla A; Andrés V
    BMC Biol; 2004 Apr; 2():5. PubMed ID: 15061869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 5A6A polymorphism in the promoter of the stromelysin-1 (MMP3) gene as a risk factor for restenosis.
    Humphries S; Bauters C; Meirhaeghe A; Luong L; Bertrand M; Amouyel P
    Eur Heart J; 2002 May; 23(9):721-5. PubMed ID: 11977998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interleukin 1B-511 polymorphism is associated with the risk of developing restenosis after coronary stenting in Mexican patients.
    Miranda-Malpica E; Martínez-Rios MA; Fragoso JM; Delgadillo-Rodríguez H; Rodríguez-Pérez JM; González-Quesada C; Martínez-Rodríguez N; Saldaña-Mendoza A; Peña-Duque MA; Vargas-Alarcón G
    Hum Immunol; 2008 Feb; 69(2):116-21. PubMed ID: 18361937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic diversity of RANTES gene promoter and susceptibility to coronary artery disease and restenosis after percutaneous coronary intervention.
    Vogiatzi K; Voudris V; Apostolakis S; Kochiadakis GE; Thomopoulou S; Zaravinos A; Spandidos DA
    Thromb Res; 2009 May; 124(1):84-9. PubMed ID: 19201454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single nucleotide polymorphism in the p27(Kip1) gene is associated with primary patency of lower extremity vein bypass grafts.
    Conte MS; Owens CD; Belkin M; Creager MA; Edwards KL; Gasper WJ; Kenagy RD; LeBoeuf RC; Sobel M; Clowes A
    J Vasc Surg; 2013 May; 57(5):1179-85.e1-2. PubMed ID: 23312942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of OAZ1 gene polymorphisms with subclinical and clinical vascular events.
    Dumont J; Zureik M; Bauters C; Grupposo MC; Cottel D; Montaye M; Hamon M; Ducimetière P; Amouyel P; Brousseau T
    Arterioscler Thromb Vasc Biol; 2007 Oct; 27(10):2120-6. PubMed ID: 17761941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of association between the cholesteryl ester transfer protein gene--TaqIB polymorphism and coronary restenosis following percutaneous transluminal coronary angioplasty and stenting: a pilot study.
    Kaestner S; Patsouras N; Spathas DH; Flordellis CS; Manolis AS
    Angiology; 2010 May; 61(4):338-43. PubMed ID: 19815603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractalkine receptor polymorphisms V2491 and T280M as genetic risk factors for restenosis.
    Niessner A; Marculescu R; Kvakan H; Haschemi A; Endler G; Weyand CM; Maurer G; Mannhalter C; Wojta J; Wagner O; Huber K
    Thromb Haemost; 2005 Dec; 94(6):1251-6. PubMed ID: 16411402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin 10: a new risk marker for the development of restenosis after percutaneous coronary intervention.
    Monraats PS; Kurreeman FA; Pons D; Sewgobind VD; de Vries FR; Zwinderman AH; de Maat MP; Doevendans PA; de Winter RJ; Tio RA; Waltenberger J; Huizinga TW; Eefting D; Quax PH; Frants RR; van der Laarse A; van der Wall EE; Jukema JW
    Genes Immun; 2007 Jan; 8(1):44-50. PubMed ID: 17122782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Platelet receptor P2RY12 haplotypes predict restenosis after percutaneous coronary interventions.
    Rudez G; Pons D; Leebeek F; Monraats P; Schrevel M; Zwinderman A; de Winter R; Tio R; Doevendans P; Jukema W; de Maat M
    Hum Mutat; 2008 Mar; 29(3):375-80. PubMed ID: 18175333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent in-stent restenosis is not associated with the angiotensin-converting enzyme D/I, angiotensinogen Thr174Met and Met235Thr, and the angiotensin-II receptor 1 A1166C polymorphism.
    Gross CM; Perrot A; Geier C; Posch MG; Hassfeld S; Kramer J; Schmidt S; Derer W; Dietz R; Ozcelik C
    J Invasive Cardiol; 2007 Jun; 19(6):261-4. PubMed ID: 17541127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammation and apoptosis genes and the risk of restenosis after percutaneous coronary intervention.
    Monraats PS; de Vries F; de Jong LW; Pons D; Sewgobind VD; Zwinderman AH; de Maat MP; 't Hart LM; Doevendans PA; de Winter RJ; Tio RA; Waltenberger J; Frants RR; van der Laarse A; van der Wall EE; Wouter Jukema J
    Pharmacogenet Genomics; 2006 Oct; 16(10):747-54. PubMed ID: 17001294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycoprotein VI polymorphisms and outcome after percutaneous coronary interventions.
    Boettiger C; Koch W; Mehilli J; Schoemig A; Kastrati A
    Thromb Haemost; 2007 Apr; 97(4):673-4. PubMed ID: 17393032
    [No Abstract]   [Full Text] [Related]  

  • 20. Genetic variants in CCNB1 associated with differential gene transcription and risk of coronary in-stent restenosis.
    Silvestre-Roig C; Fernández P; Mansego ML; van Tiel CM; Viana R; Anselmi CV; Condorelli G; de Winter RJ; Martín-Fuentes P; Solanas-Barca M; Civeira F; Focaccio A; de Vries CJ; Chaves FJ; Andrés V
    Circ Cardiovasc Genet; 2014 Feb; 7(1):59-70. PubMed ID: 24395923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.