These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45 related articles for article (PubMed ID: 1966775)
1. Two-channel transporter versus a single-channel Na+-dependent transporter for glucose and amino acids in rat and turtle. Ugolev AM; Metel'skii ST Biomed Sci; 1990; 1(6):578-84. PubMed ID: 1966775 [TBL] [Abstract][Full Text] [Related]
2. [A multichannel transporter for glucose and amino acid transport]. Metel'skiĭ ST Fiziol Zh SSSR Im I M Sechenova; 1992 Aug; 78(8):84-92. PubMed ID: 1335929 [TBL] [Abstract][Full Text] [Related]
3. Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport. Gagnon MP; Bissonnette P; Deslandes LM; Wallendorff B; Lapointe JY Biophys J; 2004 Jan; 86(1 Pt 1):125-33. PubMed ID: 14695256 [TBL] [Abstract][Full Text] [Related]
4. Interrelationship between the Na+/glucose cotransporter and CFTR in Caco-2 cells: relevance to cystic fibrosis. Mailleau C; Capeau J; Brahimi-Horn MC J Cell Physiol; 1998 Sep; 176(3):472-81. PubMed ID: 9699500 [TBL] [Abstract][Full Text] [Related]
5. Sodium-coupled glucose transporter as a functional glucose sensor of retinal microvascular circulation. Wakisaka M; Kitazono T; Kato M; Nakamura U; Yoshioka M; Uchizono Y; Yoshinari M Circ Res; 2001 Jun; 88(11):1183-8. PubMed ID: 11397785 [TBL] [Abstract][Full Text] [Related]
6. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Quick M; Tomasevic J; Wright EM Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248 [TBL] [Abstract][Full Text] [Related]
7. Rat lung alveolar type II cell line maintains sodium transport characteristics of primary culture. Michaut P; Planes C; Escoubet B; Clement A; Amiel C; Clerici C J Cell Physiol; 1996 Oct; 169(1):78-86. PubMed ID: 8841424 [TBL] [Abstract][Full Text] [Related]
8. Position 170 of Rabbit Na+/glucose cotransporter (rSGLT1) lies in the Na+ pathway; modulation of polarity/charge at this site regulates charge transfer and carrier turnover. Huntley SA; Krofchick D; Silverman M Biophys J; 2004 Jul; 87(1):295-310. PubMed ID: 15240465 [TBL] [Abstract][Full Text] [Related]
9. Development of the intestinal SGLT1 transporter in rats. Khan JM; Wingertzahn MA; Teichberg S; Vancurova I; Harper RG; Wapnir RA Mol Genet Metab; 2000 Mar; 69(3):233-9. PubMed ID: 10767178 [TBL] [Abstract][Full Text] [Related]
10. Intestinal transport of beta-thioglycosides by Na+/glucose cotransporter. Mizuma T; Hagi K; Awazu S J Pharm Pharmacol; 2000 Mar; 52(3):303-10. PubMed ID: 10757418 [TBL] [Abstract][Full Text] [Related]
11. Site density of mouse intestinal glucose transporters declines with age. Ferraris RP; Hsiao J; Hernandez R; Hirayama B Am J Physiol; 1993 Feb; 264(2 Pt 1):G285-93. PubMed ID: 8447410 [TBL] [Abstract][Full Text] [Related]
12. Sodium channel but neither Na(+)-H+ nor Na-glucose symport inhibitors slow neonatal lung water clearance. O'Brodovich H; Hannam V; Rafii B Am J Respir Cell Mol Biol; 1991 Oct; 5(4):377-84. PubMed ID: 1654956 [TBL] [Abstract][Full Text] [Related]
13. Turtles and rats: a biochemical comparison of anoxia-tolerant and anoxia-sensitive brains. Suarez RK; Doll CJ; Buie AE; West TG; Funk GD; Hochachka PW Am J Physiol; 1989 Nov; 257(5 Pt 2):R1083-8. PubMed ID: 2556054 [TBL] [Abstract][Full Text] [Related]
14. Improvement of intestinal absorption of peptide drugs by glycosylation: transport of tetrapeptide by the sodium ion-dependent D-glucose transporter. Nomoto M; Yamada K; Haga M; Hayashi M J Pharm Sci; 1998 Mar; 87(3):326-32. PubMed ID: 9523986 [TBL] [Abstract][Full Text] [Related]
15. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1. Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of Na+-dependent D-glucose transport. Hopfer U J Supramol Struct; 1977; 7(1):1-13. PubMed ID: 604695 [TBL] [Abstract][Full Text] [Related]
17. [Role of Na(+)-glucose cotransport in fluid absorption across alveolar epithelium in isolated rat lungs]. Suzuki S; Noda M; Sugita M; Tanita T; Ono S; Sakuma T; Koike K; Fujimura S Nihon Kyobu Shikkan Gakkai Zasshi; 1996 Oct; 34(10):1109-14. PubMed ID: 8953905 [TBL] [Abstract][Full Text] [Related]
18. Increased Na(+)-dependent D-glucose transport in small intestine of retinyl palmitate treated rats. Tomimatsu T; Horie T In Vivo; 2001; 15(1):81-6. PubMed ID: 11286135 [TBL] [Abstract][Full Text] [Related]
19. Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes. Blasco T; Aramayona JJ; Alcalde AI; Catalán J; Sarasa M; Sorribas V Am J Physiol Renal Physiol; 2003 Oct; 285(4):F799-810. PubMed ID: 12812916 [TBL] [Abstract][Full Text] [Related]