These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 19667806)

  • 1. Probabilistic model evaluation of continuous air monitor response for meeting radiation protection goals.
    Whicker JJ; Justus AL
    Health Phys; 2009 Sep; 97(3):228-41. PubMed ID: 19667806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative method for optimized placement of continuous air monitors.
    Whicker JJ; Rodgers JC; Moxley JS
    Health Phys; 2003 Nov; 85(5):599-609. PubMed ID: 14571993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considerations for data processing by continuous air monitors based on accumulation sampling techniques.
    Zhengyong L; Whicker JJ
    Health Phys; 2008 Feb; 94(2 Suppl):S4-15. PubMed ID: 18192798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation impact caused by activation of air from the future GSI accelerator facility fair.
    Gutermuth F; Wildermuth H; Radon T; Fehrenbacher G
    Radiat Prot Dosimetry; 2005; 115(1-4):437-40. PubMed ID: 16381762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical system utilising a Monte Carlo calculation method for accurate dose assessment in radiation accidents.
    Takahashi F; Endo A
    Radiat Prot Dosimetry; 2007; 126(1-4):595-9. PubMed ID: 17510203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of air monitoring and experimental aerosol data for intake assessment for Mayak plutonium workers.
    Zaytseva YV; Tretyakov FD; Romanov SA; Miller G; Bertelli L; Guilmette RA
    Radiat Prot Dosimetry; 2007; 127(1-4):535-9. PubMed ID: 17848389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose trends in occupational radiation exposure in Europe results from the ESOREX project.
    Frasch G; Petrová K
    Radiat Prot Dosimetry; 2007; 125(1-4):121-6. PubMed ID: 17533160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainties analysis for the plutonium dosimetry model, doses-2005, using Mayak bioassay data.
    Bess JD; Krahenbuhl MP; Miller SC; Slaughter DM; Khokhryakov VV; Khokhryakov VF; Suslova KG; Vostrotin VV
    Health Phys; 2007 Sep; 93(3):207-19. PubMed ID: 17693771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of site profiles for dose reconstruction used in worker compensation claims.
    Kenoyer JL; Scalsky ED; Taulbee TD
    Health Phys; 2008 Jul; 95(1):47-54. PubMed ID: 18545029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the main factors affecting the evaluation of the radon dose in workplaces: the case of tourist caves.
    Sainz C; Quindós LS; Fuente I; Nicolás J; Quindós L
    J Hazard Mater; 2007 Jul; 145(3):368-71. PubMed ID: 17184916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How safe is control banding? Integrated evaluation by comparing OELs with measurement data and using monte carlo simulation.
    Tischer M; Bredendiek-Kämper S; Poppek U; Packroff R
    Ann Occup Hyg; 2009 Jul; 53(5):449-62. PubMed ID: 19531808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers.
    Stayner L; Vrijheid M; Cardis E; Stram DO; Deltour I; Gilbert SJ; Howe G
    Radiat Res; 2007 Dec; 168(6):757-63. PubMed ID: 18088178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty and variability in historical time-weighted average exposure data.
    Davis AJ; Strom DJ
    Health Phys; 2008 Feb; 94(2):145-60. PubMed ID: 18188049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk-based containment and air monitoring criteria for work with dispersible radioactive materials.
    Veluri VR; Justus AL
    Health Phys; 2013 Apr; 104(4):419-27. PubMed ID: 23439146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air contamination analysis during emergency medical treatment.
    Yamada Y; Fukutsu K; Yuuki M; Akashi M
    Radiat Prot Dosimetry; 2009 Jun; 134(2):113-21. PubMed ID: 19423637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel technique for the rapid identification of alpha emitters released during a radiological incident.
    Dilbeck GA; Taylor B; Leitch J; Silverstone M; Moore B; Honsa P
    Health Phys; 2006 Oct; 91(4):311-7. PubMed ID: 16966874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data.
    Drews M; Lauritzen B; Madsen H
    Radiat Prot Dosimetry; 2005; 113(1):75-89. PubMed ID: 15572402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Individual respiratory protective devices considering dispersion of radioactive aerosols in the area of Chernobyl nuclear plant in 1986-1991].
    Budyka AK; Ogorodnikov BI; Skitovich VI
    Gig Sanit; 1993 Apr; (4):39-42. PubMed ID: 8088579
    [No Abstract]   [Full Text] [Related]  

  • 19. Derivation of continuous air monitor equations for DAC and DAC-h.
    Justus AL
    Health Phys; 2010 May; 98(5):735-40. PubMed ID: 20386203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of continuous air monitor (CAM) sampling heads.
    McFarland AR; Ortiz CA; Rodgers JC
    Health Phys; 1990 Mar; 58(3):275-81. PubMed ID: 2312293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.