These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 196685)

  • 1. [A mathematical model of the pyruvate oxidation in liver mitochondria. 1. Regulation of the Krebs cycle by adenine and pyridine nucleotides].
    Dynnik VV; Temnov AV
    Biokhimiia; 1977 Jun; 42(6):1030-44. PubMed ID: 196685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mathematical model of carbohydrate energy metabolism. Interaction between glycolysis, the Krebs cycle and the H-transporting shuttles at varying ATPase load].
    Dynnik VV; Khaĭnrikh R; Sel'kov EE
    Biokhimiia; 1980 May; 45(5):771-82. PubMed ID: 6445762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of NAD recirculation on the mechanism of ATP stabilization in cytoplasm. Mathematical models].
    Dynnik VV; Sel'kov EE; Ovchinnikov IA
    Biokhimiia; 1977 Sep; 42(9):1567-76. PubMed ID: 199286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mathematical model for carbohydrate energy metabolism. Mechanism of the Pasteur effect].
    Khainrikh R; Dynnik VV; Sel'kov EE
    Biokhimiia; 1980 Jun; 45(6):963-73. PubMed ID: 6452176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mechanisms of the regulation of muscle energy metabolism on oxidation of glucose and fatty acids. A mathematical model].
    Dynnik VV
    Biokhimiia; 1982 Aug; 47(8):1278-88. PubMed ID: 6215068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ratio between carbohydrate and lipid metabolism in muscle cell energy metabolism during ATPase loading. Mathematical model].
    Dynnik VV
    Biofizika; 1981; 26(4):712-8. PubMed ID: 6456774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Krebs cycle and activation of glyoxylate cycle in the course of chronological aging of Saccharomyces cerevisiae. Compensatory role of succinate oxidation.
    Samokhvalov V; Ignatov V; Kondrashova M
    Biochimie; 2004 Jan; 86(1):39-46. PubMed ID: 14987799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The mitochondria of poikilothermic vertebrates: oxidative phosphorylation and adenine nucleotides].
    Savina MV; Ivanova TI; Egoiants MA
    Zh Evol Biokhim Fiziol; 1993; 29(2):113-9. PubMed ID: 8317178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria.
    Dietzen DJ; Davis EJ
    Arch Biochem Biophys; 1993 Aug; 305(1):91-102. PubMed ID: 8342959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE EFFECTS OF ADENINE NUCLEOTIDES ON PYRUVATE METABOLISM IN RAT LIVER.
    BERRY MN
    Biochem J; 1965 Jun; 95(3):587-96. PubMed ID: 14342491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activities of NAD-specific and NADP-specific isocitrate dehydrogenases in rat-liver mitochondria. Studies with D-threo-alpha-methylisocitrate.
    Smith CM; Plaut GW
    Eur J Biochem; 1979 Jun; 97(1):283-95. PubMed ID: 38961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-dependent control of the tricarboxylic acid cycle by fatty acid oxidation in rat liver mitochondria.
    Garland PB; Shepherd D; Nicholls DG; Ontko J
    Adv Enzyme Regul; 1968; 6():3-30. PubMed ID: 5720339
    [No Abstract]   [Full Text] [Related]  

  • 13. Hydroperoxide-stimulated release of calcium from rat liver and AS-30D hepatoma mitochondria.
    Fiskum G; Pease A
    Cancer Res; 1986 Jul; 46(7):3459-63. PubMed ID: 3708577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of enzyme function.
    Atkinson DE
    Annu Rev Microbiol; 1969; 23():47-68. PubMed ID: 4900062
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of guanidine derivatives on mitochondrial function. I. Phenethylbiguanide inhibition of respiration in mitochondria from guinea pig and rat tissues.
    Davidoff F
    J Clin Invest; 1968 Oct; 47(10):2331-43. PubMed ID: 5676527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical effects of niridazole. I. In vitro and in vivo effect of niridazole on the rate of gluconeogenesis and oxidation of pyruvate and some Krebs cycle intermediates in mice.
    Sharaf AA; Khayyal MT; Kheir-el-Din A; Sharaf AA; Kassem F
    Egypt J Bilharz; 1978; 5(1-2):49-57. PubMed ID: 555754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The activity of the dehydrogenases of the tricarboxylic acid cycle and concentration of adenylic nucleotides in the brain and liver in experimental hypothyroidism].
    Glushakova NE; Misiuk EM; Taranovich GL
    Probl Endokrinol (Mosk); 1976; 22(1):50-4. PubMed ID: 1257219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the tricarboxylic acid cycle and beta-oxidation by excess substrates.
    Dynnik VV; Djafarov RH
    Biochem Int; 1986 Jun; 12(6):795-805. PubMed ID: 3741443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on the regulation of carbohydrate metabolism in vivo. I. Action of ethionine].
    Nordmann R; Arnaud M; Johnson C; Nordmann J
    Bull Soc Chim Biol (Paris); 1969 Jun; 51(1):149-56. PubMed ID: 4309216
    [No Abstract]   [Full Text] [Related]  

  • 20. [Substrate inhibition in the tricarboxylic acid cycle].
    Dynnik VV; Maevskiĭ EI; Grigorenko EV; Kim IuV
    Biofizika; 1984; 29(6):954-8. PubMed ID: 6518172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.