These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19669132)

  • 1. Biophysical studies of the interactions between the phage varphiKZ gp144 lytic transglycosylase and model membranes.
    Cloutier I; Paradis-Bleau C; Giroux AM; Pigeon X; Arseneault M; Levesque RC; Auger M
    Eur Biophys J; 2010 Jan; 39(2):263-76. PubMed ID: 19669132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase.
    Paradis-Bleau C; Cloutier I; Lemieux L; Sanschagrin F; Laroche J; Auger M; Garnier A; Levesque RC
    FEMS Microbiol Lett; 2007 Jan; 266(2):201-9. PubMed ID: 17233731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform infrared spectroscopic study of the interactions of a strongly antimicrobial but weakly hemolytic analogue of gramicidin S with lipid micelles and lipid bilayer membranes.
    Lewis RN; Kiricsi M; Prenner EJ; Hodges RS; McElhaney RN
    Biochemistry; 2003 Jan; 42(2):440-9. PubMed ID: 12525171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the bacteriophage phi KZ lytic transglycosylase gp144.
    Fokine A; Miroshnikov KA; Shneider MM; Mesyanzhinov VV; Rossmann MG
    J Biol Chem; 2008 Mar; 283(11):7242-50. PubMed ID: 18160394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein.
    Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA
    Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure and interaction of cupiennin 1a, a spider venom peptide, with phospholipid bilayers.
    Pukala TL; Boland MP; Gehman JD; Kuhn-Nentwig L; Separovic F; Bowie JH
    Biochemistry; 2007 Mar; 46(11):3576-85. PubMed ID: 17319697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN
    Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.
    Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J
    Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies.
    Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN
    Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irreversible binding and activity control of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii at an anionic lipid bilayer surface.
    Li L; Storm P; Karlsson OP; Berg S; Wieslander A
    Biochemistry; 2003 Aug; 42(32):9677-86. PubMed ID: 12911309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the binding and orientation of the antimicrobial peptide Plantaricin 149 in zwitterionic and negatively charged membranes.
    Kumagai PS; Sousa VK; Donato M; Itri R; Beltramini LM; Araujo APU; Buerck J; Wallace BA; Lopes JLS
    Eur Biophys J; 2019 Oct; 48(7):621-633. PubMed ID: 31324942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide.
    Alvares DS; Wilke N; Ruggiero Neto J
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):737-748. PubMed ID: 29287697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity.
    Blondelle SE; Lohner K; Aguilar M
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):89-108. PubMed ID: 10590304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces.
    Clayton JC; Hughes E; Middleton DA
    Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of prion protein to lipid membranes and implications for prion conversion.
    Sanghera N; Pinheiro TJ
    J Mol Biol; 2002 Feb; 315(5):1241-56. PubMed ID: 11827491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-decoupled 15N and 31P solid-state NMR investigations of the Pf3 coat protein in oriented phospholipid bilayers.
    Aisenbrey C; Harzer U; Bauer-Manz G; Bär G; Chotimah IN; Bertani P; Sizun C; Kuhn A; Bechinger B
    FEBS J; 2006 Feb; 273(4):817-28. PubMed ID: 16441667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1.
    Mani R; Buffy JJ; Waring AJ; Lehrer RI; Hong M
    Biochemistry; 2004 Nov; 43(43):13839-48. PubMed ID: 15504046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of ciprofloxacin with DPPC and DPPG: fluorescence anisotropy, ATR-FTIR and 31P NMR spectroscopies and conformational analysis.
    Bensikaddour H; Snoussi K; Lins L; Van Bambeke F; Tulkens PM; Brasseur R; Goormaghtigh E; Mingeot-Leclercq MP
    Biochim Biophys Acta; 2008 Nov; 1778(11):2535-43. PubMed ID: 18809375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the mechanism of antimicrobial conjugated polyelectrolytes: lipid headgroup charge and membrane fluidity effects.
    Ding L; Chi EY; Schanze KS; Lopez GP; Whitten DG
    Langmuir; 2010 Apr; 26(8):5544-50. PubMed ID: 20000327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.