BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19669873)

  • 1. Two sympatric phylogroups of the Chinese water deer (Hydropotes inermis) identified by mitochondrial DNA control region and cytochrome b gene analyses.
    Koh HS; Lee BK; Wang J; Heo SW; Jang KH
    Biochem Genet; 2009 Dec; 47(11-12):860-7. PubMed ID: 19669873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial genetic diversity, phylogeny and population structure of Hydropotes inermis in South Korea.
    Kim BJ; Lee YS; Park YS; Kim KS; Min MS; Lee SD; Lee H
    Genes Genet Syst; 2014; 89(5):227-35. PubMed ID: 25832749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phylogroup of the Siberian chipmunk from Korea (Tamias sibiricus barberi) revealed from the mitochondrial DNA cytochrome b gene.
    Koh HS; Wang J; Lee BK; Yang BG; Heo SW; Jang KH; Chun TY
    Biochem Genet; 2009 Feb; 47(1-2):1-7. PubMed ID: 19039659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial DNA phylogeography of red deer (Cervus elaphus).
    Ludt CJ; Schroeder W; Rottmann O; Kuehn R
    Mol Phylogenet Evol; 2004 Jun; 31(3):1064-83. PubMed ID: 15120401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic diversity of Chinese water deer (Hydropotes inermis inermis): implications for conservation.
    Hu J; Fang SG; Wan QH
    Biochem Genet; 2006 Apr; 44(3-4):161-72. PubMed ID: 16691433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete mitochondrial genome sequence of the Korean water deer Hydropotes inermis argyropus (Cervidae, Capreolinae).
    Yu JN; Jun J; Won C; Oh K; Kwak M
    Mitochondrial DNA; 2011 Aug; 22(4):83-5. PubMed ID: 22040071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete mitochondrial genome of a water deer subspecies, Hydropotes inermis argyropus (Cervidae: Hydropotinae).
    Kim EK; Kim HR; Jeon SH; Park YC
    Mitochondrial DNA; 2013 Feb; 24(1):17-8. PubMed ID: 22943585
    [No Abstract]   [Full Text] [Related]  

  • 8. Intraspecific comparison of two complete mitogenome sequences from the Korean water deer (Cervidae: Hydropotes inermis argyropus).
    Kim HR; Park YC
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Nov; 27(6):4101-4103. PubMed ID: 25629490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial DNA distinction of northeastern China roe deer, Siberian roe deer, and European roe deer, to clarify the taxonomic status of northeastern China roe deer.
    Xiao CT; Zhang MH; Fu Y; Koh HS
    Biochem Genet; 2007 Feb; 45(1-2):93-102. PubMed ID: 17219081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA.
    Polziehn RO; Strobeck C
    Mol Phylogenet Evol; 2002 Mar; 22(3):342-56. PubMed ID: 11884159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High prevalence of Theileria sp. in wild Chinese Water Deer (Hydropotes inermis argyropus) in South Korea.
    Han JI; Jang HJ; Lee SJ; Na KJ
    Vet Parasitol; 2009 Oct; 164(2-4):311-4. PubMed ID: 19577370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region.
    Cook CE; Wang Y; Sensabaugh G
    Mol Phylogenet Evol; 1999 Jun; 12(1):47-56. PubMed ID: 10222160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cranial morphological homogeneity in two subspecies of water deer in China and Korea.
    Kim YK; Koyabu D; Lee H; Kimura J
    J Vet Med Sci; 2015 Nov; 77(11):1427-35. PubMed ID: 26051000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies.
    Wu H; Wan QH; Fang SG; Zhang SY
    Forensic Sci Int; 2005 Mar; 148(2-3):101-5. PubMed ID: 15639603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic relationships among european red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences.
    Kuwayama R; Ozawa T
    Mol Phylogenet Evol; 2000 Apr; 15(1):115-23. PubMed ID: 10764539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeography of roe deer (Capreolus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics.
    Randi E; Alves PC; Carranza J; Milosevic-Zlatanovic S; Sfougaris A; Mucci N
    Mol Ecol; 2004 Oct; 13(10):3071-83. PubMed ID: 15367121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geographic variation and diversity of the cytochrome b gene in wild populations of medaka (Oryzias latipes) from Korea and China.
    Takehana Y; Uchiyama S; Matsuda M; Jeon SR; Sakaizumi M
    Zoolog Sci; 2004 Apr; 21(4):483-91. PubMed ID: 15118236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex.
    Haponski AE; Stepien CA
    Mol Phylogenet Evol; 2008 Oct; 49(1):69-83. PubMed ID: 18703148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of cytochrome b diversity in Chinese domestic horses.
    Yue XP; Qin F; Campana MG; Liu DH; Mao CC; Wang XB; Lan XY; Chen H; Lei CZ
    Anim Genet; 2012 Oct; 43(5):624-6. PubMed ID: 22497593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA.
    Polziehn RO; Strobeck C
    Mol Phylogenet Evol; 1998 Oct; 10(2):249-58. PubMed ID: 9878235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.