These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 19669873)
1. Two sympatric phylogroups of the Chinese water deer (Hydropotes inermis) identified by mitochondrial DNA control region and cytochrome b gene analyses. Koh HS; Lee BK; Wang J; Heo SW; Jang KH Biochem Genet; 2009 Dec; 47(11-12):860-7. PubMed ID: 19669873 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial genetic diversity, phylogeny and population structure of Hydropotes inermis in South Korea. Kim BJ; Lee YS; Park YS; Kim KS; Min MS; Lee SD; Lee H Genes Genet Syst; 2014; 89(5):227-35. PubMed ID: 25832749 [TBL] [Abstract][Full Text] [Related]
3. A phylogroup of the Siberian chipmunk from Korea (Tamias sibiricus barberi) revealed from the mitochondrial DNA cytochrome b gene. Koh HS; Wang J; Lee BK; Yang BG; Heo SW; Jang KH; Chun TY Biochem Genet; 2009 Feb; 47(1-2):1-7. PubMed ID: 19039659 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Ludt CJ; Schroeder W; Rottmann O; Kuehn R Mol Phylogenet Evol; 2004 Jun; 31(3):1064-83. PubMed ID: 15120401 [TBL] [Abstract][Full Text] [Related]
5. Genetic diversity of Chinese water deer (Hydropotes inermis inermis): implications for conservation. Hu J; Fang SG; Wan QH Biochem Genet; 2006 Apr; 44(3-4):161-72. PubMed ID: 16691433 [TBL] [Abstract][Full Text] [Related]
6. Complete mitochondrial genome sequence of the Korean water deer Hydropotes inermis argyropus (Cervidae, Capreolinae). Yu JN; Jun J; Won C; Oh K; Kwak M Mitochondrial DNA; 2011 Aug; 22(4):83-5. PubMed ID: 22040071 [TBL] [Abstract][Full Text] [Related]
7. Complete mitochondrial genome of a water deer subspecies, Hydropotes inermis argyropus (Cervidae: Hydropotinae). Kim EK; Kim HR; Jeon SH; Park YC Mitochondrial DNA; 2013 Feb; 24(1):17-8. PubMed ID: 22943585 [No Abstract] [Full Text] [Related]
8. Intraspecific comparison of two complete mitogenome sequences from the Korean water deer (Cervidae: Hydropotes inermis argyropus). Kim HR; Park YC Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Nov; 27(6):4101-4103. PubMed ID: 25629490 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial DNA distinction of northeastern China roe deer, Siberian roe deer, and European roe deer, to clarify the taxonomic status of northeastern China roe deer. Xiao CT; Zhang MH; Fu Y; Koh HS Biochem Genet; 2007 Feb; 45(1-2):93-102. PubMed ID: 17219081 [TBL] [Abstract][Full Text] [Related]
10. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Polziehn RO; Strobeck C Mol Phylogenet Evol; 2002 Mar; 22(3):342-56. PubMed ID: 11884159 [TBL] [Abstract][Full Text] [Related]
11. High prevalence of Theileria sp. in wild Chinese Water Deer (Hydropotes inermis argyropus) in South Korea. Han JI; Jang HJ; Lee SJ; Na KJ Vet Parasitol; 2009 Oct; 164(2-4):311-4. PubMed ID: 19577370 [TBL] [Abstract][Full Text] [Related]
12. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Cook CE; Wang Y; Sensabaugh G Mol Phylogenet Evol; 1999 Jun; 12(1):47-56. PubMed ID: 10222160 [TBL] [Abstract][Full Text] [Related]
13. Cranial morphological homogeneity in two subspecies of water deer in China and Korea. Kim YK; Koyabu D; Lee H; Kimura J J Vet Med Sci; 2015 Nov; 77(11):1427-35. PubMed ID: 26051000 [TBL] [Abstract][Full Text] [Related]
14. Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies. Wu H; Wan QH; Fang SG; Zhang SY Forensic Sci Int; 2005 Mar; 148(2-3):101-5. PubMed ID: 15639603 [TBL] [Abstract][Full Text] [Related]
15. Phylogenetic relationships among european red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Kuwayama R; Ozawa T Mol Phylogenet Evol; 2000 Apr; 15(1):115-23. PubMed ID: 10764539 [TBL] [Abstract][Full Text] [Related]
16. Phylogeography of roe deer (Capreolus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics. Randi E; Alves PC; Carranza J; Milosevic-Zlatanovic S; Sfougaris A; Mucci N Mol Ecol; 2004 Oct; 13(10):3071-83. PubMed ID: 15367121 [TBL] [Abstract][Full Text] [Related]
17. Geographic variation and diversity of the cytochrome b gene in wild populations of medaka (Oryzias latipes) from Korea and China. Takehana Y; Uchiyama S; Matsuda M; Jeon SR; Sakaizumi M Zoolog Sci; 2004 Apr; 21(4):483-91. PubMed ID: 15118236 [TBL] [Abstract][Full Text] [Related]
18. Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex. Haponski AE; Stepien CA Mol Phylogenet Evol; 2008 Oct; 49(1):69-83. PubMed ID: 18703148 [TBL] [Abstract][Full Text] [Related]
19. Characterization of cytochrome b diversity in Chinese domestic horses. Yue XP; Qin F; Campana MG; Liu DH; Mao CC; Wang XB; Lan XY; Chen H; Lei CZ Anim Genet; 2012 Oct; 43(5):624-6. PubMed ID: 22497593 [TBL] [Abstract][Full Text] [Related]
20. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Polziehn RO; Strobeck C Mol Phylogenet Evol; 1998 Oct; 10(2):249-58. PubMed ID: 9878235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]