These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19670468)

  • 21. The interpolated twitch can be a useful tool in patient research.
    Horstman AM
    J Appl Physiol (1985); 2009 Jul; 107(1):359; discussion 367-8. PubMed ID: 19567809
    [No Abstract]   [Full Text] [Related]  

  • 22. Neural and muscular determinants of maximal rate of force development.
    Dideriksen JL; Del Vecchio A; Farina D
    J Neurophysiol; 2020 Jan; 123(1):149-157. PubMed ID: 31618103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Counterpoint: the interpolated twitch does not provide a valid measure of the voluntary activation of muscle.
    de Haan A; Gerrits KH; de Ruiter CJ
    J Appl Physiol (1985); 2009 Jul; 107(1):355-7; discussion 357-8. PubMed ID: 19567806
    [No Abstract]   [Full Text] [Related]  

  • 24. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous.
    Miller JD; Herda TJ; Trevino MA; Sterczala AJ; Ciccone AB
    Exp Physiol; 2017 Aug; 102(8):950-961. PubMed ID: 28544046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation.
    Herbert RD; Gandevia SC
    J Neurophysiol; 1999 Nov; 82(5):2271-83. PubMed ID: 10561405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maximal rate of force development can represent a more functional measure of muscle activation.
    Girard O; Millet G
    J Appl Physiol (1985); 2009 Jul; 107(1):359-60; discussion 367-8. PubMed ID: 19670469
    [No Abstract]   [Full Text] [Related]  

  • 27. Testing of motor unit synchronization model for localized muscle fatigue.
    Naik GR; Kumar DK; Yadav V; Wheeler K; Arjunan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():360-3. PubMed ID: 19963458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of prolonged static stretching on motor unit firing properties.
    Ye X; Beck TW; Wages NP
    Muscle Nerve; 2016 May; 53(5):808-17. PubMed ID: 26378724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Summation of slow motor unit forces at constant and variable interpulse intervals in rat soleus muscle.
    Drzymała-Celichowska H; Kaczmarek P; Krutki P; Celichowski J
    J Electromyogr Kinesiol; 2016 Oct; 30():1-8. PubMed ID: 27203710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spike-triggered averaging provides inaccurate estimates of motor unit twitch properties under optimal conditions.
    Dideriksen JL; Negro F
    J Electromyogr Kinesiol; 2018 Dec; 43():104-110. PubMed ID: 30267966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.
    Riley ZA; Terry ME; Mendez-Villanueva A; Litsey JC; Enoka RM
    Muscle Nerve; 2008 Jun; 37(6):745-53. PubMed ID: 18288713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behavior of motor units in human biceps brachii during a submaximal fatiguing contraction.
    Garland SJ; Enoka RM; Serrano LP; Robinson GA
    J Appl Physiol (1985); 1994 Jun; 76(6):2411-9. PubMed ID: 7928865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Path to Understanding How Motor Cortex Influences Muscle Activity.
    Oby ER; Yu BM
    Neuron; 2017 Aug; 95(3):476-478. PubMed ID: 28772116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do additional inputs change maximal voluntary motor unit firing rates after spinal cord injury?
    Zijdewind I; Gant K; Bakels R; Thomas CK
    Neurorehabil Neural Repair; 2012 Jan; 26(1):58-67. PubMed ID: 21903974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. I. Motor-unit recruitment.
    Tansey KE; Botterman BR
    J Neurophysiol; 1996 Jan; 75(1):26-37. PubMed ID: 8822539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimentally verified mathematical approach for the prediction of force developed by motor units at variable frequency stimulation patterns.
    Raikova R; Rusev R; Drzymała-Celichowska H; Krutki P; Aladjov H; Celichowski J
    J Biomech; 2010 May; 43(8):1546-52. PubMed ID: 20185140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle recruitment through electrical stimulation of the lumbo-sacral spinal cord.
    Mushahwar VK; Horch KW
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):22-9. PubMed ID: 10779104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptations in biceps brachii motor unit activity after repeated bouts of eccentric exercise in elbow flexor muscles.
    Dartnall TJ; Nordstrom MA; Semmler JG
    J Neurophysiol; 2011 Mar; 105(3):1225-35. PubMed ID: 21248060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.
    Houtman CJ; Stegeman DF; Van Dijk JP; Zwarts MJ
    J Appl Physiol (1985); 2003 Sep; 95(3):1045-54. PubMed ID: 12766181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.