BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19670865)

  • 1. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model.
    van't Slot G; Humpf HU
    J Agric Food Chem; 2009 Sep; 57(17):8041-8. PubMed ID: 19670865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by Fluorescence in situ hybridization (FISH).
    Hein EM; Rose K; van't Slot G; Friedrich AW; Humpf HU
    J Agric Food Chem; 2008 Mar; 56(6):2281-90. PubMed ID: 18303842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal metabolism of two A-type procyanidins using the pig cecum model: detailed structure elucidation of unknown catabolites with Fourier transform mass spectrometry (FTMS).
    Engemann A; Hübner F; Rzeppa S; Humpf HU
    J Agric Food Chem; 2012 Jan; 60(3):749-57. PubMed ID: 22175758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Procyanidins from Myrothamnus flabellifolia.
    Anke J; Petereit F; Engelhardt C; Hensel A
    Nat Prod Res; 2008; 22(14):1237-48. PubMed ID: 18932087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex flavonoids in cocoa: synthesis and degradation by intestinal microbiota.
    Van't Slot G; Mattern W; Rzeppa S; Grewe D; Humpf HU
    J Agric Food Chem; 2010 Aug; 58(15):8879-86. PubMed ID: 20614902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the in vitro biotransformation of (-)-epicatechin and procyanidin B2 by human faecal microbiota.
    Stoupi S; Williamson G; Drynan JW; Barron D; Clifford MN
    Mol Nutr Food Res; 2010 Jun; 54(6):747-59. PubMed ID: 19943260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial catabolism of procyanidins by human gut microbiota.
    Ou K; Sarnoski P; Schneider KR; Song K; Khoo C; Gu L
    Mol Nutr Food Res; 2014 Nov; 58(11):2196-205. PubMed ID: 25045165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microbial metabolism of condensed (+)-catechins by rat-caecal microflora.
    Groenewoud G; Hundt HK
    Xenobiotica; 1986 Feb; 16(2):99-107. PubMed ID: 3962338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolymerization of cranberry procyanidins using (+)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallate as chain breakers.
    Liu H; Zou T; Gao JM; Gu L
    Food Chem; 2013 Nov; 141(1):488-94. PubMed ID: 23768384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of catechin derivatives as mammalian DNA polymerase inhibitors.
    Mizushina Y; Saito A; Tanaka A; Nakajima N; Kuriyama I; Takemura M; Takeuchi T; Sugawara F; Yoshida H
    Biochem Biophys Res Commun; 2005 Jul; 333(1):101-9. PubMed ID: 15950188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L.
    Bicker J; Petereit F; Hensel A
    Fitoterapia; 2009 Dec; 80(8):483-95. PubMed ID: 19695312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-reactivity relationships of flavan-3-ols on product generation in aqueous glucose/glycine model systems.
    Noda Y; Peterson DG
    J Agric Food Chem; 2007 May; 55(9):3686-91. PubMed ID: 17394338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxic effects of digalloyl dimer procyanidins in human cancer cell lines.
    Actis-Goretta L; Romanczyk LJ; Rodriguez CA; Kwik-Uribe C; Keen CL
    J Nutr Biochem; 2008 Dec; 19(12):797-808. PubMed ID: 18440795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids.
    Labib S; Erb A; Kraus M; Wickert T; Richling E
    Mol Nutr Food Res; 2004 Sep; 48(4):326-32. PubMed ID: 15497184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavan-3-ol/Procyanidin Metabolomics in Rat Urine Using HPLC-Quadrupole TOF/MS.
    Masumoto S; Aoki S; Miura T; Shoji T
    Mol Nutr Food Res; 2018 Oct; 62(19):e1700867. PubMed ID: 29577618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavan-3-ol C-glycosides--preparation and model experiments mimicking their human intestinal transit.
    Hasslauer I; Oehme A; Locher S; Valotis A; Van't Slot G; Humpf HU; Schreier P
    Mol Nutr Food Res; 2010 Nov; 54(11):1546-55. PubMed ID: 20468005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floral procyanidins of the forage legume red clover (Trifolium pratense L.).
    Sivakumaran S; Meagher LP; Foo LY; Lane GA; Fraser K; Rumball W
    J Agric Food Chem; 2004 Mar; 52(6):1581-5. PubMed ID: 15030214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniformly-sized, molecularly imprinted polymers for (-)-epigallocatechin gallate, -epicatechin gallate and -gallocatechin gallate by multi-step swelling and polymerization method.
    Haginaka J; Tabo H; Ichitani M; Takihara T; Sugimoto A; Sambe H
    J Chromatogr A; 2007 Jul; 1156(1-2):45-50. PubMed ID: 17070533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-gamma-valerolactone as the major metabolites.
    Appeldoorn MM; Vincken JP; Aura AM; Hollman PC; Gruppen H
    J Agric Food Chem; 2009 Feb; 57(3):1084-92. PubMed ID: 19191673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diastereomeric difference of inclusion modes between (-)-epicatechin gallate, (-)-epigallocatechin gallate and (+)-gallocatechin gallate, with beta-cyclodextrin in aqueous solvent.
    Ishizu T; Kajitani S; Tsutsumi H; Yamamoto H; Harano K
    Magn Reson Chem; 2008 May; 46(5):448-56. PubMed ID: 18318450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.