These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 19670898)

  • 1. MF-DFT and experimental investigations of the origins of hysteresis in mercury porosimetry of silica materials.
    Rigby SP; Chigada PI
    Langmuir; 2010 Jan; 26(1):241-8. PubMed ID: 19670898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of mercury contact angle, surface tension, and retraction mechanism on the interpretation of mercury porosimetry data.
    Rigby SP; Edler KJ
    J Colloid Interface Sci; 2002 Jun; 250(1):175-90. PubMed ID: 16290649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and structural investigation of fractal porous-silica over an extremely wide scale range of pore size.
    Ono Y; Mayama H; Furó I; Sagidullin AI; Matsushima K; Ura H; Uchiyama T; Tsujii K
    J Colloid Interface Sci; 2009 Aug; 336(1):215-25. PubMed ID: 19406424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model.
    Porcheron F; Thommes M; Ahmad R; Monson PA
    Langmuir; 2007 Mar; 23(6):3372-80. PubMed ID: 17305379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of nonwetting phase entrapment within porous media using magnetic resonance imaging.
    Watt-Smith MJ; Rigby SP; Chudek JA; Fletcher RS
    Langmuir; 2006 May; 22(11):5180-8. PubMed ID: 16700611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury Porosimetry: Contact Angle Hysteresis of Materials with Controlled Pore Structure.
    Salmas C; Androutsopoulos G
    J Colloid Interface Sci; 2001 Jul; 239(1):178-189. PubMed ID: 11397062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.
    Thommes M; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials.
    Moro F; Böhni H
    J Colloid Interface Sci; 2002 Feb; 246(1):135-49. PubMed ID: 16290394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of nitrogen adsorption at 77 K on non-porous silica and pore wall of MCM-41 materials by means of density functional theory.
    Ustinov EA; Do DD
    J Colloid Interface Sci; 2006 May; 297(2):480-8. PubMed ID: 16343521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hierarchical Structural Model for the Interpretation of Mercury Porosimetry and Nitrogen Sorption.
    Rigby SP
    J Colloid Interface Sci; 2000 Apr; 224(2):382-396. PubMed ID: 10727351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of highly porous polymeric materials with pore diameters larger than 100 nm by mercury porosimetry and X-ray scattering methods.
    Egger CC; du Fresne C; Raman VI; Schädler V; Frechen T; Roth SV; Müller-Buschbaum P
    Langmuir; 2008 Jun; 24(11):5877-87. PubMed ID: 18442280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory model of adsorption on amorphous and microporous silica materials.
    Ravikovitch PI; Neimark AV
    Langmuir; 2006 Dec; 22(26):11171-9. PubMed ID: 17154599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids.
    Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP
    J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the distribution of consolidants and interpretation of mercury porosimetry data in a sandstone porous network using LSCM.
    Zoghlami K; Gómez-Gras D
    Microsc Res Tech; 2004 Dec; 65(6):270-5. PubMed ID: 15662619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Macroscopic Structural Disorder in Porous Media Using Mercury Porosimetry.
    Rigby SP; Fletcher RS; Riley SN
    J Colloid Interface Sci; 2001 Aug; 240(1):190-210. PubMed ID: 11446801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets].
    Szepes A; Kovács J; Szabóné Revész P
    Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic aspects of mercury porosimetry: a lattice model study.
    Porcheron F; Monson PA
    Langmuir; 2005 Mar; 21(7):3179-86. PubMed ID: 15780002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption/desorption hysteresis of simple fluids confined in realistic heterogeneous silica mesopores of micrometric length: a new analysis exploiting a multiscale Monte Carlo approach.
    Puibasset J
    J Chem Phys; 2007 Oct; 127(15):154701. PubMed ID: 17949185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.