These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Monte-Carlo multiscale simulation study of argon adsorption/desorption hysteresis in mesoporous heterogeneous tubular pores like MCM-41 or oxidized porous silicon. Puibasset J Langmuir; 2009 Jan; 25(2):903-11. PubMed ID: 19063620 [TBL] [Abstract][Full Text] [Related]
23. Fractal Analysis of Mercury Porosimetry Data in the Framework of the Thermodynamic Method. Sahouli B; Blacher S; Pirard R; Brouers F J Colloid Interface Sci; 1999 Jun; 214(2):450-454. PubMed ID: 10339387 [TBL] [Abstract][Full Text] [Related]
24. A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials. Peng B; Yu YX Langmuir; 2008 Nov; 24(21):12431-9. PubMed ID: 18839971 [TBL] [Abstract][Full Text] [Related]
25. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption. Kaufmann J; Loser R; Leemann A J Colloid Interface Sci; 2009 Aug; 336(2):730-7. PubMed ID: 19505695 [TBL] [Abstract][Full Text] [Related]
26. On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry. Dehl RE J Biomed Mater Res; 1982 Sep; 16(5):715-9. PubMed ID: 7130222 [TBL] [Abstract][Full Text] [Related]
27. AFM-porosimetry: density and pore volume measurements of particulate materials. Sörensen MH; Valle-Delgado JJ; Corkery RW; Rutland MW; Alberius PC Langmuir; 2008 Jun; 24(13):7024-30. PubMed ID: 18503284 [TBL] [Abstract][Full Text] [Related]
29. Quantification of Spatial Correlation in Porous Media and Its Effect on Mercury Porosimetry. Bryant S; Mason G; Mellor D J Colloid Interface Sci; 1996 Jan; 177(1):88-100. PubMed ID: 10479420 [TBL] [Abstract][Full Text] [Related]
34. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. Coasne B; Pellenq RJ J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439 [TBL] [Abstract][Full Text] [Related]
35. Influence of the Fractal Character of Model Substances on their Reactivity at Solid-Liquid Interfaces. Rizkalla N; Hildgen P; Thibert R J Colloid Interface Sci; 1999 Jul; 215(1):43-53. PubMed ID: 10362471 [TBL] [Abstract][Full Text] [Related]
36. Packed uniform sphere model for solids: interstitial access opening sizes and pressure deficiencies for wetting liquids with comparison to reported experimental results. Mayer RP; Stowe RA J Colloid Interface Sci; 2006 Feb; 294(1):139-50. PubMed ID: 16085078 [TBL] [Abstract][Full Text] [Related]
37. Measuring surface topography by scanning electron microscopy. II. Analysis of three estimators of surface roughness in second dimension and third dimension. Bonetto RD; Ladaga JL; Ponz E Microsc Microanal; 2006 Apr; 12(2):178-86. PubMed ID: 17481355 [TBL] [Abstract][Full Text] [Related]
38. Effect of nanometric-scale roughness on slip at the wall of simple fluids. Schmatko T; Hervet H; Léger L Langmuir; 2006 Aug; 22(16):6843-50. PubMed ID: 16863229 [TBL] [Abstract][Full Text] [Related]