BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 19671061)

  • 21. The N-ethylmaleimide-sensitive protein thiol groups necessary for sea-urchin egg cortical-granule exocytosis are highly exposed to the medium and are required for triggering by Ca2+.
    Whalley T; Sokoloff A
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):391-6. PubMed ID: 7522436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol.
    Ferraretto A; Pitto M; Palestini P; Masserini M
    Biochemistry; 1997 Jul; 36(30):9232-6. PubMed ID: 9230056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion.
    Lee J; Lentz BR
    Biochemistry; 1997 May; 36(21):6251-9. PubMed ID: 9174340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Members of the SNARE hypothesis are associated with cortical granule exocytosis in the sea urchin egg.
    Conner S; Leaf D; Wessel G
    Mol Reprod Dev; 1997 Sep; 48(1):106-18. PubMed ID: 9266767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion.
    Hu K; Carroll J; Fedorovich S; Rickman C; Sukhodub A; Davletov B
    Nature; 2002 Feb; 415(6872):646-50. PubMed ID: 11832947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis.
    Sørensen JB; Matti U; Wei SH; Nehring RB; Voets T; Ashery U; Binz T; Neher E; Rettig J
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1627-32. PubMed ID: 11830673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deployment of membrane fusion protein domains during fusion.
    Bentz J; Mittal A
    Cell Biol Int; 2000; 24(11):819-38. PubMed ID: 11067767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells.
    Shin OH; Rizo J; Südhof TC
    Nat Neurosci; 2002 Jul; 5(7):649-56. PubMed ID: 12055633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding membrane fusion combining experimental and simulation studies.
    Jena BP
    Methods Cell Biol; 2008; 90():183-98. PubMed ID: 19195551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review).
    Rawat SS; Viard M; Gallo SA; Rein A; Blumenthal R; Puri A
    Mol Membr Biol; 2003; 20(3):243-54. PubMed ID: 12893532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of curvature and hydrophobic interstice energy in fusion: studies of lipid perturbant effects.
    Haque ME; Lentz BR
    Biochemistry; 2004 Mar; 43(12):3507-17. PubMed ID: 15035621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholesterol interaction with proteins that partition into membrane domains: an overview.
    Epand RM; Thomas A; Brasseur R; Epand RF
    Subcell Biochem; 2010; 51():253-78. PubMed ID: 20213547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms.
    Abbineni PS; Hibbert JE; Coorssen JR
    Biol Bull; 2013 Aug; 224(3):200-17. PubMed ID: 23995744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new approach to the molecular analysis of docking, priming, and regulated membrane fusion.
    Rogasevskaia TP; Coorssen JR
    J Chem Biol; 2011 Jul; 4(3):117-36. PubMed ID: 22315653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation of plasmalemmal shedding of vesicles induced by the cholesterol/sphingomyelin binding protein, ostreolysin A-mCherry.
    Skočaj M; Yu Y; Grundner M; Resnik N; Bedina Zavec A; Leonardi A; Križaj I; Guella G; Maček P; Kreft ME; Frangež R; Veranič P; Sepčić K
    Biochim Biophys Acta; 2016 Nov; 1858(11):2882-2893. PubMed ID: 27591807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol-Recognition Motifs in Membrane Proteins.
    Fantini J; Epand RM; Barrantes FJ
    Adv Exp Med Biol; 2019; 1135():3-25. PubMed ID: 31098808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfhydryl involvement in fusion mechanisms.
    Sanders DA
    Subcell Biochem; 2000; 34():483-514. PubMed ID: 10808342
    [No Abstract]   [Full Text] [Related]  

  • 38. Correction: Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion.
    Diao J; Grob P; Cipriano DJ; Kyoung M; Zhang Y; Shah S; Nguyen A; Padolina M; Srivastava A; Vrljic M; Shah A; Nogales E; Chu S; Brunger AT
    Elife; 2015 Oct; 4():e12289. PubMed ID: 26486862
    [No Abstract]   [Full Text] [Related]  

  • 39. Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion.
    Furber KL; Backlund PS; Yergey AL; Coorssen JR
    Proteomes; 2019 Sep; 7(4):. PubMed ID: 31569819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined targeted Omic and Functional Assays Identify Phospholipases A₂ that Regulate Docking/Priming in Calcium-Triggered Exocytosis.
    Dabral D; Coorssen JR
    Cells; 2019 Apr; 8(4):. PubMed ID: 30986994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.