BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19671099)

  • 21. Receptor-mediated signalling pathways acting through hydrolysis of membrane phospholipids in cardiomyocytes.
    Lamers JM; De Jonge HW; Panagia V; Van Heugten HA
    Cardioscience; 1993 Sep; 4(3):121-31. PubMed ID: 8400019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional expression of Cf9 and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans.
    Hennin C; Höfte M; Diederichsen E
    Mol Plant Microbe Interact; 2001 Sep; 14(9):1075-85. PubMed ID: 11551072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene.
    Al-Ahmad H; Dwyer J; Moloney M; Gressel J
    Plant Biotechnol J; 2006 Jan; 4(1):7-21. PubMed ID: 17177781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells.
    Wycliffe P; Sitbon F; Wernersson J; Ezcurra I; Ellerström M; Rask L
    Plant J; 2005 Oct; 44(1):1-15. PubMed ID: 16167891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time polymerase chain reaction (PCR) quantitative detection of Brassica napus using a locked nucleic acid TaqMan probe.
    Schmidt AM; Rott ME
    J Agric Food Chem; 2006 Feb; 54(4):1158-65. PubMed ID: 16478231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Obtaining new germplast of Brassica napus with high oleic acid content by RNA interference and marker-free transformation of Fad2 gene].
    Chen W; Li JF; Dong YS; Li GZ; Cun SX; Wang JQ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Dec; 32(6):665-71. PubMed ID: 17167203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased expression of phospholipase Dα1 in guard cells decreases water loss with improved seed production under drought in Brassica napus.
    Lu S; Bahn SC; Qu G; Qin H; Hong Y; Xu Q; Zhou Y; Hong Y; Wang X
    Plant Biotechnol J; 2013 Apr; 11(3):380-9. PubMed ID: 23279050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An allotetraploid Brassica napus early-flowering mutant has BnaFLC2-regulated flowering.
    Huang Y; Jiang L; Ruan Y; Shen W; Liu C
    J Sci Food Agric; 2013 Dec; 93(15):3763-8. PubMed ID: 23749702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient temporal relationship between 1-oleoyl-2-acetyl-sn-glycerol (OAG)-activated synthesis and hydrolysis of polyphosphoinositides: desensitization of phospholipase C and the inositol lipid kinases upon long-term treatment of ascites cells by exogenous OAG.
    Haeffner EW
    J Lipid Mediat; 1993 Jul; 7(3):239-52. PubMed ID: 8219004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis.
    Deng W; Yan F; Zhang X; Tang Y; Yuan Y
    Plant Cell Physiol; 2015 Aug; 56(8):1624-40. PubMed ID: 26092973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis.
    Dove SK; Cooke FT; Douglas MR; Sayers LG; Parker PJ; Michell RH
    Nature; 1997 Nov; 390(6656):187-92. PubMed ID: 9367158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of a Brassica napus cDNA corresponding to a B-class floral development gene.
    Pylatuik JD; Lindsay DL; Davis AR; Bonham-Smith PC
    J Exp Bot; 2003 Oct; 54(391):2385-7. PubMed ID: 12909692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation.
    Nagpal P; Ellis CM; Weber H; Ploense SE; Barkawi LS; Guilfoyle TJ; Hagen G; Alonso JM; Cohen JD; Farmer EE; Ecker JR; Reed JW
    Development; 2005 Sep; 132(18):4107-18. PubMed ID: 16107481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia.
    Kazama Y; Fujiwara MT; Koizumi A; Nishihara K; Nishiyama R; Kifune E; Abe T; Kawano S
    Plant Cell Physiol; 2009 Jun; 50(6):1127-41. PubMed ID: 19406862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves.
    Li X; Gao MJ; Pan HY; Cui DJ; Gruber MY
    J Agric Food Chem; 2010 Feb; 58(3):1639-45. PubMed ID: 20073469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis.
    Hua W; Li RJ; Zhan GM; Liu J; Li J; Wang XF; Liu GH; Wang HZ
    Plant J; 2012 Feb; 69(3):432-44. PubMed ID: 21954986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot.
    Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN
    N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering.
    Tan X; Li S; Hu L; Zhang C
    BMC Plant Biol; 2020 Feb; 20(1):81. PubMed ID: 32075594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow.
    Simard MJ; Légère A; Willenborg CJ
    Environ Biosafety Res; 2009; 8(3):123-31. PubMed ID: 20028614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress.
    Koh J; Chen G; Yoo MJ; Zhu N; Dufresne D; Erickson JE; Shao H; Chen S
    J Proteome Res; 2015 Aug; 14(8):3068-81. PubMed ID: 26086353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.