BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 19671527)

  • 1. Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells.
    Audit B; Zaghloul L; Vaillant C; Chevereau G; d'Aubenton-Carafa Y; Thermes C; Arneodo A
    Nucleic Acids Res; 2009 Oct; 37(18):6064-75. PubMed ID: 19671527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
    Drillon G; Audit B; Argoul F; Arneodo A
    J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection.
    Karnani N; Taylor CM; Malhotra A; Dutta A
    Mol Biol Cell; 2010 Feb; 21(3):393-404. PubMed ID: 19955211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.
    Audit B; Zaghloul L; Baker A; Arneodo A; Chen CL; d'Aubenton-Carafa Y; Thermes C
    Subcell Biochem; 2013; 61():57-80. PubMed ID: 23150246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large replication skew domains delimit GC-poor gene deserts in human.
    Zaghloul L; Drillon G; Boulos RE; Argoul F; Thermes C; Arneodo A; Audit B
    Comput Biol Chem; 2014 Dec; 53 Pt A():153-65. PubMed ID: 25224847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human gene organization driven by the coordination of replication and transcription.
    Huvet M; Nicolay S; Touchon M; Audit B; d'Aubenton-Carafa Y; Arneodo A; Thermes C
    Genome Res; 2007 Sep; 17(9):1278-85. PubMed ID: 17675363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.
    Comoglio F; Schlumpf T; Schmid V; Rohs R; Beisel C; Paro R
    Cell Rep; 2015 May; 11(5):821-34. PubMed ID: 25921534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins.
    Mesner LD; Valsakumar V; Cieslik M; Pickin R; Hamlin JL; Bekiranov S
    Genome Res; 2013 Nov; 23(11):1774-88. PubMed ID: 23861383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide analysis of the spatiotemporal regulation of firing and dormant replication origins in human cells.
    Sugimoto N; Maehara K; Yoshida K; Ohkawa Y; Fujita M
    Nucleic Acids Res; 2018 Jul; 46(13):6683-6696. PubMed ID: 29893900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleosome occupancy as a novel chromatin parameter for replication origin functions.
    Rodriguez J; Lee L; Lynch B; Tsukiyama T
    Genome Res; 2017 Feb; 27(2):269-277. PubMed ID: 27895110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins.
    Touchon M; Nicolay S; Audit B; Brodie of Brodie EB; d'Aubenton-Carafa Y; Arneodo A; Thermes C
    Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9836-41. PubMed ID: 15985556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential localization of human origins of DNA replication at the 5'-ends of expressed genes and at evolutionarily conserved DNA sequences.
    Valenzuela MS; Chen Y; Davis S; Yang F; Walker RL; Bilke S; Lueders J; Martin MM; Aladjem MI; Massion PP; Meltzer PS
    PLoS One; 2011; 6(5):e17308. PubMed ID: 21602917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing.
    Musiałek MW; Rybaczek D
    Cell Cycle; 2015; 14(14):2251-64. PubMed ID: 26030591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput mapping of origins of replication in human cells.
    Lucas I; Palakodeti A; Jiang Y; Young DJ; Jiang N; Fernald AA; Le Beau MM
    EMBO Rep; 2007 Aug; 8(8):770-7. PubMed ID: 17668008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activities of eukaryotic replication origins in chromatin.
    Weinreich M; Palacios DeBeer MA; Fox CA
    Biochim Biophys Acta; 2004 Mar; 1677(1-3):142-57. PubMed ID: 15020055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).
    Langley AR; Gräf S; Smith JC; Krude T
    Nucleic Acids Res; 2016 Dec; 44(21):10230-10247. PubMed ID: 27587586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes.
    Westenberger SJ; Cui L; Dharia N; Winzeler E; Cui L
    BMC Genomics; 2009 Dec; 10():610. PubMed ID: 20015349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear location and chromatin organization of active chorion amplification origins.
    Calvi BR; Spradling AC
    Chromosoma; 2001 Jul; 110(3):159-72. PubMed ID: 11513291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference of the simian virus 40 origin of replication by the cytomegalovirus immediate early gene enhancer: evidence for competition of active regulatory chromatin conformation in a single domain.
    Chen PH; Tseng WB; Chu Y; Hsu MT
    Mol Cell Biol; 2000 Jun; 20(11):4062-74. PubMed ID: 10805748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of fission yeast Orp1 and Mcm6 proteins with chromosomal replication origins.
    Ogawa Y; Takahashi T; Masukata H
    Mol Cell Biol; 1999 Oct; 19(10):7228-36. PubMed ID: 10490657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.