These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 19671619)

  • 1. Novel scaffolds of collagen with bioactive nanofiller for the osteogenic stimulation of bone marrow stromal cells.
    Hong SJ; Yu HS; Noh KT; Oh SA; Kim HW
    J Biomater Appl; 2010 May; 24(8):733-50. PubMed ID: 19671619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation of human bone marrow stromal cells on three-dimensional scaffolds of mineralized collagen: influence of seeding density on colonization, proliferation and osteogenic differentiation.
    Lode A; Bernhardt A; Gelinsky M
    J Tissue Eng Regen Med; 2008 Oct; 2(7):400-7. PubMed ID: 18756590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds.
    Fang B; Wan YZ; Tang TT; Gao C; Dai KR
    Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold.
    Valarmathi MT; Yost MJ; Goodwin RL; Potts JD
    Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.
    Bernhardt A; Despang F; Lode A; Demmler A; Hanke T; Gelinsky M
    J Tissue Eng Regen Med; 2009 Jan; 3(1):54-62. PubMed ID: 19012272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic effects of bioactive glass on bone marrow stromal cells.
    Radin S; Reilly G; Bhargave G; Leboy PS; Ducheyne P
    J Biomed Mater Res A; 2005 Apr; 73(1):21-9. PubMed ID: 15693019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro.
    Mauney JR; Sjostorm S; Blumberg J; Horan R; O'Leary JP; Vunjak-Novakovic G; Volloch V; Kaplan DL
    Calcif Tissue Int; 2004 May; 74(5):458-68. PubMed ID: 14961210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells.
    Heinemann C; Heinemann S; Lode A; Bernhardt A; Worch H; Hanke T
    Biomacromolecules; 2009 May; 10(5):1305-10. PubMed ID: 19344120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells.
    Dawson JI; Wahl DA; Lanham SA; Kanczler JM; Czernuszka JT; Oreffo RO
    Biomaterials; 2008 Jul; 29(21):3105-16. PubMed ID: 18442852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro osteogenic potential of human bone marrow stromal cells cultivated in porous scaffolds from mineralized collagen.
    Bernhardt A; Lode A; Mietrach C; Hempel U; Hanke T; Gelinsky M
    J Biomed Mater Res A; 2009 Sep; 90(3):852-62. PubMed ID: 18615470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study.
    Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y
    Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of chitosan-collagen sponges and osteogenic differentiation of rat-bone-marrow stromal cells.
    Arpornmaeklong P; Pripatnanont P; Suwatwirote N
    Int J Oral Maxillofac Surg; 2008 Apr; 37(4):357-66. PubMed ID: 18272341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix.
    Kim HW; Song JH; Kim HE
    J Biomed Mater Res A; 2006 Dec; 79(3):698-705. PubMed ID: 16850456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering.
    Yu HS; Jin GZ; Won JE; Wall I; Kim HW
    J Biomed Mater Res A; 2012 Sep; 100(9):2431-40. PubMed ID: 22566478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice.
    Hu JZ; Zhang ZY; Zhao J; Zhang XL; Liu GT; Jiang XQ
    Chin Med J (Engl); 2009 Apr; 122(8):972-9. PubMed ID: 19493425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stromal cell-derived factor-1alpha-directed chemoattraction of transiently CXCR4-overexpressing bone marrow stromal cells into functionalized three-dimensional biomimetic scaffolds.
    Thieme S; Ryser M; Gentsch M; Navratiel K; Brenner S; Stiehler M; Rölfing J; Gelinsky M; Rösen-Wolff A
    Tissue Eng Part C Methods; 2009 Dec; 15(4):687-96. PubMed ID: 19260802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery.
    El-Ghannam A; Ning CQ; Mehta J
    J Biomed Mater Res A; 2004 Dec; 71(3):377-90. PubMed ID: 15470721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering.
    Yang X; Tare RS; Partridge KA; Roach HI; Clarke NM; Howdle SM; Shakesheff KM; Oreffo RO
    J Bone Miner Res; 2003 Jan; 18(1):47-57. PubMed ID: 12510805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.