BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19671920)

  • 1. Specific iron chelators determine the route of ferritin degradation.
    De Domenico I; Ward DM; Kaplan J
    Blood; 2009 Nov; 114(20):4546-51. PubMed ID: 19671920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome.
    De Domenico I; Vaughn MB; Li L; Bagley D; Musci G; Ward DM; Kaplan J
    EMBO J; 2006 Nov; 25(22):5396-404. PubMed ID: 17082767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit.
    Zhang Y; Mikhael M; Xu D; Li Y; Soe-Lin S; Ning B; Li W; Nie G; Zhao Y; Ponka P
    Antioxid Redox Signal; 2010 Oct; 13(7):999-1009. PubMed ID: 20406137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular distribution of desferrioxamine and hydroxypyridin-4-one chelators in K562 cells affects chelation of intracellular iron pools.
    Hoyes KP; Porter JB
    Br J Haematol; 1993 Oct; 85(2):393-400. PubMed ID: 8280612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells.
    Asano T; Komatsu M; Yamaguchi-Iwai Y; Ishikawa F; Mizushima N; Iwai K
    Mol Cell Biol; 2011 May; 31(10):2040-52. PubMed ID: 21444722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the iron(III) chelator, desferrioxamine, on iron and transferrin uptake by the human malignant melanoma cell.
    Richardson D; Ponka P; Baker E
    Cancer Res; 1994 Feb; 54(3):685-9. PubMed ID: 8306330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deferoxamine-induced neurite outgrowth and synapse formation in postnatal rat dorsal root ganglion (DRG) cell cultures.
    Nowicki M; Kosacka J; Spanel-Borowski K; Borlak J
    Eur J Cell Biol; 2009 Oct; 88(10):551-62. PubMed ID: 19581022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular labile iron pool and intracellular ferritin in K562 cells.
    Konijn AM; Glickstein H; Vaisman B; Meyron-Holtz EG; Slotki IN; Cabantchik ZI
    Blood; 1999 Sep; 94(6):2128-34. PubMed ID: 10477743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy, ferritin and iron chelation.
    De Domenico I; Ward DM; Kaplan J
    Autophagy; 2010 Jan; 6(1):157. PubMed ID: 20009528
    [No Abstract]   [Full Text] [Related]  

  • 10. Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form.
    Kurz T; Brunk UT
    Autophagy; 2009 Jan; 5(1):93-5. PubMed ID: 18989099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of iron from ferritin requires lysosomal activity.
    Kidane TZ; Sauble E; Linder MC
    Am J Physiol Cell Physiol; 2006 Sep; 291(3):C445-55. PubMed ID: 16611735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts.
    Radisky DC; Kaplan J
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):201-5. PubMed ID: 9806901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of oxidant-induced cell death by lysosomotropic iron chelators.
    Persson HL; Yu Z; Tirosh O; Eaton JW; Brunk UT
    Free Radic Biol Med; 2003 May; 34(10):1295-305. PubMed ID: 12726917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron mobilisation and cellular protection by a new synthetic chelator O-Trensox.
    Rakba N; Aouad F; Henry C; Caris C; Morel I; Baret P; Pierre JL; Brissot P; Ward RJ; Lescoat G; Crichton RR
    Biochem Pharmacol; 1998 Jun; 55(11):1797-806. PubMed ID: 9714298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanogel-DFO conjugates as a model to investigate pharmacokinetics, biodistribution, and iron chelation in vivo.
    Wang Y; Liu Z; Lin TM; Chanana S; Xiong MP
    Int J Pharm; 2018 Mar; 538(1-2):79-86. PubMed ID: 29341909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of nitrogen monoxide (NO)-mediated iron mobilization from cells. NO intercepts iron before incorporation into ferritin and indirectly mobilizes iron from ferritin in a glutathione-dependent manner.
    Watts RN; Richardson DR
    Eur J Biochem; 2002 Jul; 269(14):3383-92. PubMed ID: 12135476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents III: the effect of the ligands on molecular targets involved in proliferation.
    Darnell G; Richardson DR
    Blood; 1999 Jul; 94(2):781-92. PubMed ID: 10397746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of the mechanism(s) involved in doxorubicin-mediated iron accumulation in ferritin: studies using metabolic inhibitors, protein synthesis inhibitors, and lysosomotropic agents.
    Kwok JC; Richardson DR
    Mol Pharmacol; 2004 Jan; 65(1):181-95. PubMed ID: 14722250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron chelation regulates cyclin D1 expression via the proteasome: a link to iron deficiency-mediated growth suppression.
    Nurtjahja-Tjendraputra E; Fu D; Phang JM; Richardson DR
    Blood; 2007 May; 109(9):4045-54. PubMed ID: 17197429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deferoxamine deconditioning increases neuronal vulnerability to hemoglobin.
    Peng D; Chen CA; Ruhela D; Li Y; Regan RF
    Exp Cell Res; 2020 May; 390(1):111926. PubMed ID: 32112801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.