BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1456 related articles for article (PubMed ID: 19671963)

  • 21. Hydrophobically modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel.
    Sahu SK; Maiti S; Maiti TK; Ghosh SK; Pramanik P
    J Drug Target; 2011 Feb; 19(2):104-13. PubMed ID: 20367067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery.
    Suktham K; Koobkokkruad T; Wutikhun T; Surassmo S
    Int J Pharm; 2018 Feb; 537(1-2):48-56. PubMed ID: 29229512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles.
    Nam HY; Kwon SM; Chung H; Lee SY; Kwon SH; Jeon H; Kim Y; Park JH; Kim J; Her S; Oh YK; Kwon IC; Kim K; Jeong SY
    J Control Release; 2009 May; 135(3):259-67. PubMed ID: 19331853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake of oleoyl-chitosan nanoparticles by A549 cells.
    Zhang J; Chen XG; Peng WB; Liu CS
    Nanomedicine; 2008 Sep; 4(3):208-14. PubMed ID: 18508414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique.
    Pandita D; Ahuja A; Velpandian T; Lather V; Dutta T; Khar RK
    Pharmazie; 2009 May; 64(5):301-10. PubMed ID: 19530440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin.
    Zhang J; Chen XG; Li YY; Liu CS
    Nanomedicine; 2007 Dec; 3(4):258-65. PubMed ID: 17962086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deoxycholic acid modified-carboxymethyl curdlan conjugate as a novel carrier of epirubicin: in vitro and in vivo studies.
    Gao F; Li L; Zhang H; Yang W; Chen H; Zhou J; Zhou Z; Wang Y; Cai Y; Li X; Liu L; Zhang Q
    Int J Pharm; 2010 Jun; 392(1-2):254-60. PubMed ID: 20347028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel.
    Saravanakumar G; Choi KY; Yoon HY; Kim K; Park JH; Kwon IC; Park K
    Int J Pharm; 2010 Jul; 394(1-2):154-61. PubMed ID: 20438818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications.
    Mandal BB; Priya AS; Kundu SC
    Acta Biomater; 2009 Oct; 5(8):3007-20. PubMed ID: 19398392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells.
    Gao C; Pan J; Lu W; Zhang M; Zhou L; Tian J
    Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of paclitaxel-loaded nanoparticles with radiation on hypoxic MCF-7 cells.
    Jin C; Wu H; Liu J; Bai L; Guo G
    J Clin Pharm Ther; 2007 Feb; 32(1):41-7. PubMed ID: 17286788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering.
    Nayak S; Talukdar S; Kundu SC
    Cell Tissue Res; 2012 Mar; 347(3):783-94. PubMed ID: 22327482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradable nanoparticles based on linoleic acid and poly(beta-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs.
    Zhao Z; He M; Yin L; Bao J; Shi L; Wang B; Tang C; Yin C
    Biomacromolecules; 2009 Mar; 10(3):565-72. PubMed ID: 19175304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery.
    Guo M; Que C; Wang C; Liu X; Yan H; Liu K
    Biomaterials; 2011 Jan; 32(1):185-94. PubMed ID: 21067808
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles.
    Seow WY; Xue JM; Yang YY
    Biomaterials; 2007 Mar; 28(9):1730-40. PubMed ID: 17182095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy.
    Acharya S; Dilnawaz F; Sahoo SK
    Biomaterials; 2009 Oct; 30(29):5737-50. PubMed ID: 19631377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic anticancer effects achieved by co-delivery of TRAIL and paclitaxel using cationic polymeric micelles.
    Lee AL; Wang Y; Pervaiz S; Fan W; Yang YY
    Macromol Biosci; 2011 Feb; 11(2):296-307. PubMed ID: 21154473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copolymer nanoparticles composed of sulfobetaine and poly(ε-caprolactone) as novel anticancer drug carriers.
    Cao J; Xiu KM; Zhu K; Chen YW; Luo XL
    J Biomed Mater Res A; 2012 Aug; 100(8):2079-87. PubMed ID: 22581715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymeric nanoparticles based on chitooligosaccharide as drug carriers for co-delivery of all-trans-retinoic acid and paclitaxel.
    Zhang J; Han J; Zhang X; Jiang J; Xu M; Zhang D; Han J
    Carbohydr Polym; 2015 Sep; 129():25-34. PubMed ID: 26050884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.
    Min KH; Park K; Kim YS; Bae SM; Lee S; Jo HG; Park RW; Kim IS; Jeong SY; Kim K; Kwon IC
    J Control Release; 2008 May; 127(3):208-18. PubMed ID: 18336946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 73.