BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 196723)

  • 1. Kinetics of the cytochrome c oxidase and reductase reactions in energized and de-energized mitochondria.
    Petersen LC; Degn H; Nicholls P
    Can J Biochem; 1977 Jul; 55(7):706-13. PubMed ID: 196723
    [No Abstract]   [Full Text] [Related]  

  • 2. The functional catalytic unit involved in proton pumping by rat liver cytochrome-c reductase and by cytochrome-c oxidase.
    Moody AJ; Rich PR
    Biochim Biophys Acta; 1989 Jan; 973(1):29-34. PubMed ID: 2536551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative distribution of cytochrome oxidase, succinate permease, and fixed anionic sites on the intact inner mitochondrial membrane. Polycationic ferritin as a visually detectable metabolic inhibitor.
    Hackenbrock CR
    Arch Biochem Biophys; 1975 Sep; 170(1):139-48. PubMed ID: 169743
    [No Abstract]   [Full Text] [Related]  

  • 4. Nature of respiratory stimulation in hyperthyroidism: the redox behaviour of cytochrome c.
    Schmehl I; Luvisetto S; Canton M; Gennari F; Azzone GF
    FEBS Lett; 1995 Nov; 375(3):206-10. PubMed ID: 7498500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oxidation of exogenous cytochrome c by mitochondria. Resolution of a long-standing controversy.
    Wikström M; Casey R
    FEBS Lett; 1985 Apr; 183(2):293-8. PubMed ID: 2985431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of respiration in proteoliposomes containing cytochrome aa3. I. Stimulation by valinomycin and uncoupler.
    Hansen FB; Miller M; Nicholls P
    Biochim Biophys Acta; 1978 Jun; 502(3):385-99. PubMed ID: 207320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The location of CuA in mammalian cytochrome c oxidase.
    Rich PR; West IC; Mitchell P
    FEBS Lett; 1988 Jun; 233(1):25-30. PubMed ID: 2454843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of energization on the apparent Michaelis-Mentne constant for oxygen in mitochondrial respiration.
    Petersen LC; Nicholls P; Degn H
    Biochem J; 1974 Aug; 142(2):247-52. PubMed ID: 4374191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreactivation of the cytochrome oxidase complex with cyanide: the reaction of heme a3 photoreduction.
    Konev SV; Beljanovich LM; Rudenok AN
    Membr Cell Biol; 1998; 12(5):743-54. PubMed ID: 10379650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of succinate dehydrogenase in response to environmental stress conditions of hypobaria and hypoxia.
    Susheela L; Ramasarma T
    Biochim Biophys Acta; 1973 Oct; 321(2):423-36. PubMed ID: 4357661
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative kinetic studies of cytochromes c in reactions with mitochondrial cytochrome c oxidase and reductase.
    Errede B; Kamen MD
    Biochemistry; 1978 Mar; 17(6):1015-27. PubMed ID: 204337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behaviour of rat-liver mitochondria during centrifugation in a sucrose gradient.
    Wattiaux R
    Mol Cell Biochem; 1974 Aug; 4(1):21-9. PubMed ID: 4371769
    [No Abstract]   [Full Text] [Related]  

  • 14. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex.
    Brown GC; Brand MD
    Biochem J; 1985 Jan; 225(2):399-405. PubMed ID: 2983670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of partial degradation of mitochondrial phospholipids by phospholipase A on the temperature dependence of succinate-cytochrome c reductase and cytochrome c oxidase.
    Wilschut JC; Scherphof GL
    Biochim Biophys Acta; 1974 Jul; 356(1):91-9. PubMed ID: 4366818
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of mitochondrial ATPase. Effect of electron flow.
    Alexandre A; Rossi CR; Carignani G; Rossi CS
    FEBS Lett; 1975 Mar; 52(1):107-10. PubMed ID: 235465
    [No Abstract]   [Full Text] [Related]  

  • 17. Reversible inhibition of electron transfer in the ubiquinol. Cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels.
    Brustovetsky NN; Amerkhanov ZG; Popova EYu ; Konstantinov AA
    FEBS Lett; 1990 Apr; 263(1):73-6. PubMed ID: 2332054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinction between oxidizing and reducing sites of cytochrome c by chemical modification with pyridoxal phosphate.
    Aviram I; Schejter A
    FEBS Lett; 1973 Oct; 36(2):174-6. PubMed ID: 4356787
    [No Abstract]   [Full Text] [Related]  

  • 19. Proton-pumping cytochrome c oxidase.
    Wikström M; Krab K
    Biochim Biophys Acta; 1979 Aug; 549(2):177-22. PubMed ID: 38840
    [No Abstract]   [Full Text] [Related]  

  • 20. Oxidation and reduction of soluble cytochrome c by membrane-bound oxidase and reductase systems.
    Smith L; Davies HC; Nava M
    J Biol Chem; 1974 May; 249(9):2904-10. PubMed ID: 4364033
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.