BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19672406)

  • 1. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.
    Zhu H; Ye L; Richard A; Golbraikh A; Wright FA; Rusyn I; Tropsha A
    Environ Health Perspect; 2009 Aug; 117(8):1257-64. PubMed ID: 19672406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity.
    Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A
    Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.
    Zhu H; Martin TM; Ye L; Sedykh A; Young DM; Tropsha A
    Chem Res Toxicol; 2009 Dec; 22(12):1913-21. PubMed ID: 19845371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.
    Bhhatarai B; Gramatica P
    Mol Divers; 2011 May; 15(2):467-76. PubMed ID: 20803170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity.
    Zhu H; Rusyn I; Richard A; Tropsha A
    Environ Health Perspect; 2008 Apr; 116(4):506-13. PubMed ID: 18414635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple approach for assessment of toxicity of nitroaromatic compounds without using complex descriptors and computer codes.
    Keshavarz MH; Akbarzadeh AR
    SAR QSAR Environ Res; 2019 May; 30(5):347-361. PubMed ID: 31020866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From QSAR to QSIIR: searching for enhanced computational toxicology models.
    Zhu H
    Methods Mol Biol; 2013; 930():53-65. PubMed ID: 23086837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ARKA: a framework of dimensionality reduction for machine-learning classification modeling, risk assessment, and data gap-filling of sparse environmental toxicity data.
    Banerjee A; Roy K
    Environ Sci Process Impacts; 2024 Jun; 26(6):991-1007. PubMed ID: 38743054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting chemical ocular toxicity using a combinatorial QSAR approach.
    Solimeo R; Zhang J; Kim M; Sedykh A; Zhu H
    Chem Res Toxicol; 2012 Dec; 25(12):2763-9. PubMed ID: 23148656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-activity-activity and quantitative structure-activity investigations of human and rodent toxicity.
    Lessigiarska I; Worth AP; Netzeva TI; Dearden JC; Cronin MT
    Chemosphere; 2006 Dec; 65(10):1878-87. PubMed ID: 16714047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative approaches for predicting in vivo effects of chemicals from their structural descriptors and the results of short-term biological assays.
    Low YS; Sedykh AY; Rusyn I; Tropsha A
    Curr Top Med Chem; 2014; 14(11):1356-64. PubMed ID: 24805064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards global QSAR model building for acute toxicity: Munro database case study.
    Chavan S; Nicholls IA; Karlsson BC; Rosengren AM; Ballabio D; Consonni V; Todeschini R
    Int J Mol Sci; 2014 Oct; 15(10):18162-74. PubMed ID: 25302621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling first report on in silico modeling of aquatic toxicity of organic chemicals to Labeo rohita (Rohu) employing QSAR and q-RASAR.
    Gallagher A; Kar S
    Chemosphere; 2024 Feb; 349():140810. PubMed ID: 38029938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data.
    Rusyn I; Sedykh A; Low Y; Guyton KZ; Tropsha A
    Toxicol Sci; 2012 May; 127(1):1-9. PubMed ID: 22387746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sirc-cvs cytotoxicity test: an alternative for predicting rodent acute systemic toxicity.
    Kitagaki M; Wakuri S; Hirota M; Tanaka N; Itagaki H
    J Toxicol Sci; 2006 Oct; 31(4):371-9. PubMed ID: 17077590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical Quantitative Structure-Activity Relationship Modeling Approach for Integrating Binary, Multiclass, and Regression Models of Acute Oral Systemic Toxicity.
    Li X; Kleinstreuer NC; Fourches D
    Chem Res Toxicol; 2020 Feb; 33(2):353-366. PubMed ID: 31975586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure.
    Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I
    Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.