These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 1967250)
21. Membrane topology of the melibiose permease of Escherichia coli studied by melB-phoA fusion analysis. Pourcher T; Bibi E; Kaback HR; Leblanc G Biochemistry; 1996 Apr; 35(13):4161-8. PubMed ID: 8672452 [TBL] [Abstract][Full Text] [Related]
22. Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. Hulett FM; Kim EE; Bookstein C; Kapp NV; Edwards CW; Wyckoff HW J Biol Chem; 1991 Jan; 266(2):1077-84. PubMed ID: 1898729 [TBL] [Abstract][Full Text] [Related]
23. Production in Escherichia coli of a rat chimeric proinsulin polypeptide carrying human A and B chains and its preparative chromatography. Olmos J; Cruz N; Sánchez M; López M; Balbás P; Gosset G; Valle F; Bolivar F J Biotechnol; 1994 Nov; 38(1):89-96. PubMed ID: 7765581 [TBL] [Abstract][Full Text] [Related]
24. lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Calamia J; Manoil C Proc Natl Acad Sci U S A; 1990 Jul; 87(13):4937-41. PubMed ID: 2164211 [TBL] [Abstract][Full Text] [Related]
25. Secretion of recombinant ribonuclease T1 into the periplasmic space of Escherichia coli with the aid of the signal peptide of alkaline phosphatase. Fujimura T; Tanaka T; Ohara K; Morioka H; Uesugi S; Ikehara M; Nishikawa S FEBS Lett; 1990 Jun; 265(1-2):71-4. PubMed ID: 2114313 [TBL] [Abstract][Full Text] [Related]
26. Use of alkaline phosphatase fusions to study protein secretion in Bacillus subtilis. Payne MS; Jackson EN J Bacteriol; 1991 Apr; 173(7):2278-82. PubMed ID: 1901054 [TBL] [Abstract][Full Text] [Related]
28. Membrane topology of the pBR322 tetracycline resistance protein. TetA-PhoA gene fusions and implications for the mechanism of TetA membrane insertion. Allard JD; Bertrand KP J Biol Chem; 1992 Sep; 267(25):17809-19. PubMed ID: 1517220 [TBL] [Abstract][Full Text] [Related]
29. Construction, bacterial expression, and characterization of hapten-specific single-chain Fv and alkaline phosphatase fusion protein. Suzuki C; Ueda H; Suzuki E; Nagamune T J Biochem; 1997 Aug; 122(2):322-9. PubMed ID: 9378709 [TBL] [Abstract][Full Text] [Related]
30. The cyanobacterium Synechococcus sp. strain PCC 7942 contains a second alkaline phosphatase encoded by phoV. Wagner KU; Masepohl B; Pistorius EK Microbiology (Reading); 1995 Dec; 141 ( Pt 12)():3049-58. PubMed ID: 8574398 [TBL] [Abstract][Full Text] [Related]
31. Alteration of the amino terminus of the mature sequence of a periplasmic protein can severely affect protein export in Escherichia coli. Li P; Beckwith J; Inouye H Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7685-9. PubMed ID: 3051001 [TBL] [Abstract][Full Text] [Related]
32. Broad-host-range vectors for delivery of TnphoA: use in genetic analysis of secreted virulence determinants of Vibrio cholerae. Taylor RK; Manoil C; Mekalanos JJ J Bacteriol; 1989 Apr; 171(4):1870-8. PubMed ID: 2539354 [TBL] [Abstract][Full Text] [Related]
33. Use of transposon TnphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: the periplasmic protein Tsp potentiates long-chain fatty acid transport. Azizan A; Black PN J Bacteriol; 1994 Nov; 176(21):6653-62. PubMed ID: 7961418 [TBL] [Abstract][Full Text] [Related]
34. Evidence that TET protein functions as a multimer in the inner membrane of Escherichia coli. Hickman RK; Levy SB J Bacteriol; 1988 Apr; 170(4):1715-20. PubMed ID: 3280550 [TBL] [Abstract][Full Text] [Related]
35. Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides. Chou MM; Kendall DA J Biol Chem; 1990 Feb; 265(5):2873-80. PubMed ID: 2154463 [TBL] [Abstract][Full Text] [Related]
36. Recombinant plasmids with genes for the biosynthesis of alkaline phosphatase of Escherichia coli. Boidol W; Simonis M; Töpert M; Siewert G Mol Gen Genet; 1982; 185(3):510-2. PubMed ID: 6285149 [TBL] [Abstract][Full Text] [Related]
37. Use of phoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase. San Millan JL; Boyd D; Dalbey R; Wickner W; Beckwith J J Bacteriol; 1989 Oct; 171(10):5536-41. PubMed ID: 2551889 [TBL] [Abstract][Full Text] [Related]
38. The TraT lipoprotein as a vehicle for the transport of foreign antigenic determinants to the cell surface of Escherichia coli K12: structure-function relationships in the TraT protein. Taylor IM; Harrison JL; Timmis KN; O'Connor CD Mol Microbiol; 1990 Aug; 4(8):1259-68. PubMed ID: 1704095 [TBL] [Abstract][Full Text] [Related]
39. Use of the "blue halo" assay in the identification of genes encoding exported proteins with cleavable signal peptides: cloning of a Borrelia burgdorferi plasmid gene with a signal peptide. Giladi M; Champion CI; Haake DA; Blanco DR; Miller JF; Miller JN; Lovett MA J Bacteriol; 1993 Jul; 175(13):4129-36. PubMed ID: 8320228 [TBL] [Abstract][Full Text] [Related]
40. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. Karamyshev AL; Karamysheva ZN; Kajava AV; Ksenzenko VN; Nesmeyanova MA J Mol Biol; 1998 Apr; 277(4):859-70. PubMed ID: 9545377 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]