These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19673071)

  • 1. Leveraging single protein polymers to measure flexural rigidity.
    van Mameren J; Vermeulen KC; Gittes F; Schmidt CF
    J Phys Chem B; 2009 Mar; 113(12):3837-44. PubMed ID: 19673071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of the torsional rigidity of single actin filaments.
    Yasuda R; Miyata H; Kinosita K
    J Mol Biol; 1996 Oct; 263(2):227-36. PubMed ID: 8913303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape.
    Gittes F; Mickey B; Nettleton J; Howard J
    J Cell Biol; 1993 Feb; 120(4):923-34. PubMed ID: 8432732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing the central part of tropomyosin increases the bending stiffness of the thin filament.
    Nabiev SR; Ovsyannikov DA; Kopylova GV; Shchepkin DV; Matyushenko AM; Koubassova NA; Levitsky DI; Tsaturyan AK; Bershitsky SY
    Biophys J; 2015 Jul; 109(2):373-9. PubMed ID: 26200873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation.
    Tsuda Y; Yasutake H; Ishijima A; Yanagida T
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12937-42. PubMed ID: 8917522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural rigidity of individual microtubules measured by a buckling force with optical traps.
    Kikumoto M; Kurachi M; Tosa V; Tashiro H
    Biophys J; 2006 Mar; 90(5):1687-96. PubMed ID: 16339879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elasticity of biopolymer filaments.
    Holzapfel GA; Ogden RW
    Acta Biomater; 2013 Jul; 9(7):7320-5. PubMed ID: 23501788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonaffine rubber elasticity for stiff polymer networks.
    Heussinger C; Schaefer B; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031906. PubMed ID: 17930270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.
    Janmey PA; Euteneuer U; Traub P; Schliwa M
    J Cell Biol; 1991 Apr; 113(1):155-60. PubMed ID: 2007620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping and wiggling: elastohydrodynamics of driven microfilaments.
    Wiggins CH; Riveline D; Ott A; Goldstein RE
    Biophys J; 1998 Feb; 74(2 Pt 1):1043-60. PubMed ID: 9533717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity.
    Kurachi M; Hoshi M; Tashiro H
    Cell Motil Cytoskeleton; 1995; 30(3):221-8. PubMed ID: 7758138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of attached actin filaments.
    Zhu J; Carlsson AE
    Eur Phys J E Soft Matter; 2006 Nov; 21(3):209-222. PubMed ID: 17186161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels.
    Kang H; Wen Q; Janmey PA; Tang JX; Conti E; MacKintosh FC
    J Phys Chem B; 2009 Mar; 113(12):3799-805. PubMed ID: 19243107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin filament mechanics in the laser trap.
    Dupuis DE; Guilford WH; Wu J; Warshaw DM
    J Muscle Res Cell Motil; 1997 Feb; 18(1):17-30. PubMed ID: 9147990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a semiflexible polymer or polymer ring in shear flow.
    Lang PS; Obermayer B; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022606. PubMed ID: 25353501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic and elastic properties of F-actin: a normal-modes analysis.
    ben-Avraham D; Tirion MM
    Biophys J; 1995 Apr; 68(4):1231-45. PubMed ID: 7787015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of the dynamics of semiflexible polymers in shear flow.
    Harasim M; Wunderlich B; Peleg O; Kröger M; Bausch AR
    Phys Rev Lett; 2013 Mar; 110(10):108302. PubMed ID: 23521307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear elasticity of stiff biopolymers connected by flexible linkers.
    Kasza KE; Koenderink GH; Lin YC; Broedersz CP; Messner W; Nakamura F; Stossel TP; MacKintosh FC; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041928. PubMed ID: 19518277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions.
    Käs J; Strey H; Tang JX; Finger D; Ezzell R; Sackmann E; Janmey PA
    Biophys J; 1996 Feb; 70(2):609-25. PubMed ID: 8789080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical heterogeneity favors fragmentation of strained actin filaments.
    De La Cruz EM; Martiel JL; Blanchoin L
    Biophys J; 2015 May; 108(9):2270-81. PubMed ID: 25954884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.