BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19673082)

  • 1. Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes.
    Gibbs HL; Mackessy SP
    Toxicon; 2009 May; 53(6):672-9. PubMed ID: 19673082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets.
    Sanz L; Gibbs HL; Mackessy SP; Calvete JJ
    J Proteome Res; 2006 Sep; 5(9):2098-112. PubMed ID: 16944921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri).
    Gibbs HL; Sanz L; Chiucchi JE; Farrell TM; Calvete JJ
    J Proteomics; 2011 Sep; 74(10):2169-79. PubMed ID: 21722760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of species: Pygmy rattlesnake venom toxicity differs between native prey and related non-native species.
    Smiley-Walters SA; Farrell TM; Gibbs HL
    Toxicon; 2018 Mar; 144():42-47. PubMed ID: 29410327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High levels of functional divergence in toxicity towards prey among the venoms of individual pigmy rattlesnakes.
    Smiley-Walters SA; Farrell TM; Gibbs HL
    Biol Lett; 2019 Feb; 15(2):20180876. PubMed ID: 30958133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers.
    Mackessy SP
    Toxicon; 2010 Jul; 55(8):1463-74. PubMed ID: 20227433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.
    Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM
    J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches.
    Calvete JJ; Fasoli E; Sanz L; Boschetti E; Righetti PG
    J Proteome Res; 2009 Jun; 8(6):3055-67. PubMed ID: 19371136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny-based comparative analysis of venom proteome variation in a clade of rattlesnakes (Sistrurus sp.).
    Gibbs HL; Sanz L; Sovic MG; Calvete JJ
    PLoS One; 2013; 8(6):e67220. PubMed ID: 23826238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Rattlesnake Venoms.
    Phan P; Deshwal A; McMahon TA; Slikas M; Andrews E; Becker B; Kumar TKS
    Toxins (Basel); 2023 Dec; 16(1):. PubMed ID: 38276526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Venom Ontogeny in the Mexican Lance-Headed Rattlesnake (
    Mackessy SP; Leroy J; Mociño-Deloya E; Setser K; Bryson RW; Saviola AJ
    Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 29970805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A symphony of destruction: Dynamic differential fibrinogenolytic toxicity by rattlesnake (Crotalus and Sistrurus) venoms.
    Seneci L; Zdenek CN; Bourke LA; Cochran C; Sánchez EE; Neri-Castro E; Bénard-Valle M; Alagón A; Frank N; Fry BG
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Jul; 245():109034. PubMed ID: 33766656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes.
    Gibbs HL; Sanz L; Calvete JJ
    J Mol Evol; 2009 Feb; 68(2):113-25. PubMed ID: 19184165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protease activity and lethal toxicity of venoms from some little known rattlesnakes.
    Minton SA; Weinstein SA
    Toxicon; 1984; 22(5):828-30. PubMed ID: 6395444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predator-prey interactions and venom composition in a high elevation lizard specialist, Crotalus pricei (Twin-spotted Rattlesnake).
    Grabowsky ER; Mackessy SP
    Toxicon; 2019 Dec; 170():29-40. PubMed ID: 31513813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity.
    Mackessy SP; Sixberry NM; Heyborne WH; Fritts T
    Toxicon; 2006 Apr; 47(5):537-48. PubMed ID: 16545413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconstructing a complex molecular phenotype: population-level variation in individual venom proteins in Eastern Massasauga Rattlesnakes (Sistrurus c. catenatus).
    Lisle Gibbs H; Chiucchi JE
    J Mol Evol; 2011 Apr; 72(4):383-97. PubMed ID: 21394489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prey envenomation does not improve digestive performance in western diamondback rattlesnakes (Crotalus atrox).
    McCue MD
    J Exp Zool A Ecol Genet Physiol; 2007 Oct; 307(10):568-77. PubMed ID: 17671964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic and functional variation in venom and venom resistance of two sympatric rattlesnakes and their prey.
    Robinson KE; Holding ML; Whitford MD; Saviola AJ; Yates JR; Clark RW
    J Evol Biol; 2021 Sep; 34(9):1447-1465. PubMed ID: 34322920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Venom lethality and diet: differential responses of natural prey and model organisms to the venom of the saw-scaled vipers (Echis).
    Richards DP; Barlow A; Wüster W
    Toxicon; 2012 Jan; 59(1):110-6. PubMed ID: 22079297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.