These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 19673206)
1. A practical way to improve contrast-to-noise ratio and quantitation for statistical-based iterative reconstruction in whole-body PET imaging. Fin L; Bailly P; Daouk J; Meyer ME Med Phys; 2009 Jul; 36(7):3072-9. PubMed ID: 19673206 [TBL] [Abstract][Full Text] [Related]
2. [Quantitative evaluation of block-iterative reconstruction image in PET: comparison of the dynamic RAMLA algorithm and OSEM algorithm]. Matsumoto K; Kitamura K; Shimizu K; Murase K Nihon Hoshasen Gijutsu Gakkai Zasshi; 2007 Oct; 63(10):1138-44. PubMed ID: 18187896 [TBL] [Abstract][Full Text] [Related]
3. The SRT reconstruction algorithm for semiquantification in PET imaging. Kastis GA; Gaitanis A; Samartzis AP; Fokas AS Med Phys; 2015 Oct; 42(10):5970-82. PubMed ID: 26429272 [TBL] [Abstract][Full Text] [Related]
4. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. Akamatsu G; Ishikawa K; Mitsumoto K; Taniguchi T; Ohya N; Baba S; Abe K; Sasaki M J Nucl Med; 2012 Nov; 53(11):1716-22. PubMed ID: 22952340 [TBL] [Abstract][Full Text] [Related]
5. Comparison of two commercial whole body PET systems based on LSO and BGO crystals respectively for brain imaging. Trébossen R; Comtat C; Brulon V; Bailly P; Meyer ME Med Phys; 2009 Apr; 36(4):1399-409. PubMed ID: 19472647 [TBL] [Abstract][Full Text] [Related]
6. Optimizing scan time and bayesian penalized likelihood reconstruction algorithm in copper-64 PET/CT imaging: a phantom study. Monsef A; Sheikhzadeh P; Steiner JR; Sadeghi F; Yazdani M; Ghafarian P Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38608316 [No Abstract] [Full Text] [Related]
9. Evaluation of Penalized-Likelihood Estimation Reconstruction on a Digital Time-of-Flight PET/CT Scanner for Lindström E; Sundin A; Trampal C; Lindsjö L; Ilan E; Danfors T; Antoni G; Sörensen J; Lubberink M J Nucl Med; 2018 Jul; 59(7):1152-1158. PubMed ID: 29449445 [TBL] [Abstract][Full Text] [Related]
10. Brain PET imaging optimization with time of flight and point spread function modelling. Prieto E; Martí-Climent JM; Morán V; Sancho L; Barbés B; Arbizu J; Richter JA Phys Med; 2015 Dec; 31(8):948-955. PubMed ID: 26249138 [TBL] [Abstract][Full Text] [Related]
11. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Cheng JC; Shoghi K; Laforest R Med Phys; 2012 Feb; 39(2):1029-41. PubMed ID: 22320813 [TBL] [Abstract][Full Text] [Related]
12. Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment. Riddell C; Carson RE; Carrasquillo JA; Libutti SK; Danforth DN; Whatley M; Bacharach SL J Nucl Med; 2001 Sep; 42(9):1316-23. PubMed ID: 11535719 [TBL] [Abstract][Full Text] [Related]
13. PET based volume segmentation with emphasis on the iterative TrueX algorithm. Knäusl B; Hirtl A; Dobrozemsky G; Bergmann H; Kletter K; Dudczak R; Georg D Z Med Phys; 2012 Feb; 22(1):29-39. PubMed ID: 21251804 [TBL] [Abstract][Full Text] [Related]
14. Impact of image-space resolution modeling for studies with the high-resolution research tomograph. Sureau FC; Reader AJ; Comtat C; Leroy C; Ribeiro MJ; Buvat I; Trébossen R J Nucl Med; 2008 Jun; 49(6):1000-8. PubMed ID: 18511844 [TBL] [Abstract][Full Text] [Related]
15. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. Boellaard R; van Lingen A; Lammertsma AA J Nucl Med; 2001 May; 42(5):808-17. PubMed ID: 11337581 [TBL] [Abstract][Full Text] [Related]
16. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Kidera D; Kihara K; Akamatsu G; Mikasa S; Taniguchi T; Tsutsui Y; Takeshita T; Maebatake A; Miwa K; Sasaki M Ann Nucl Med; 2016 Feb; 30(2):97-103. PubMed ID: 26531181 [TBL] [Abstract][Full Text] [Related]
17. Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction. Richter D; Basse-Lüsebrink TC; Kampf T; Fischer A; Israel I; Schneider M; Jakob PM; Samnick S Z Med Phys; 2014 Mar; 24(1):16-26. PubMed ID: 23756331 [TBL] [Abstract][Full Text] [Related]
18. Preliminary clinical applications of a device-dedicated whole-body positron emission tomography reconstruction method: impact on standardized uptake values. Daouk J; Bailly P; Fin L; Meyer ME Nucl Med Commun; 2010 Sep; 31(9):793-9. PubMed ID: 20634766 [TBL] [Abstract][Full Text] [Related]
19. Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q.Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF). Rogasch JM; Suleiman S; Hofheinz F; Bluemel S; Lukas M; Amthauer H; Furth C EJNMMI Phys; 2020 Jan; 7(1):2. PubMed ID: 31925574 [TBL] [Abstract][Full Text] [Related]
20. Impact of target-to-background ratio, target size, emission scan duration, and activity on physical figures of merit for a 3D LSO-based whole body PET/CT scanner. Brambilla M; Matheoud R; Secco C; Sacchetti G; Comi S; Rudoni M; Carriero A; Inglese E Med Phys; 2007 Oct; 34(10):3854-65. PubMed ID: 17985631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]