These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19673278)

  • 1. Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments.
    Kocar BD; Fendorf S
    Environ Sci Technol; 2009 Jul; 43(13):4871-7. PubMed ID: 19673278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes.
    Sracek O; Berg M; Müller B
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15954-15961. PubMed ID: 29589241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction.
    Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ
    Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction.
    Tufano KJ; Reyes C; Saltikov CW; Fendorf S
    Environ Sci Technol; 2008 Nov; 42(22):8283-9. PubMed ID: 19068807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee Reservoir sediment.
    Campbell KM; Root R; O'Day PA; Hering JG
    Environ Sci Technol; 2008 Jan; 42(2):504-10. PubMed ID: 18284154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting effects of dissimilatory iron (III) and arsenic (V) reduction on arsenic retention and transport.
    Kocar BD; Herbel MJ; Tufano KJ; Fendorf S
    Environ Sci Technol; 2006 Nov; 40(21):6715-21. PubMed ID: 17144301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system.
    Kumar M; Das N; Goswami R; Sarma KP; Bhattacharya P; Ramanathan AL
    Chemosphere; 2016 Dec; 164():657-667. PubMed ID: 27635649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of elevated sulfate concentration on the mobility of arsenic in the sediment-water interface.
    Li S; Yang C; Peng C; Li H; Liu B; Chen C; Chen B; Bai J; Lin C
    Ecotoxicol Environ Saf; 2018 Jun; 154():311-320. PubMed ID: 29482126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical calculations of sulfate adsorption at the Al- and Fe-(hydr)oxide-H20 interface-estimation of gibbs free energies.
    Paul KW; Kubick JD; Sparks DL
    Environ Sci Technol; 2006 Dec; 40(24):7717-24. PubMed ID: 17256518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (Hydr)oxides.
    Ginder-Vogel M; Criddle CS; Fendorf S
    Environ Sci Technol; 2006 Jun; 40(11):3544-50. PubMed ID: 16786692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic release from arsenic-bearing Fe-Mn binary oxide: effects of E(h) condition.
    Xu W; Wang H; Liu R; Zhao X; Qu J
    Chemosphere; 2011 May; 83(7):1020-7. PubMed ID: 21354590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial reduction and release of adsorbed arsenate on Fe(III)-, Al- and coprecipitated Fe(III)/Al-hydroxides.
    Zhang X; Jia Y; Wang S; Pan R; Zhang X
    J Environ Sci (China); 2012; 24(3):440-8. PubMed ID: 22655357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic mobilization in a seawater inundated acid sulfate soil.
    Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA; McElnea A; Ahern CR; Smith CD; Powell B; Hocking RK
    Environ Sci Technol; 2010 Mar; 44(6):1968-73. PubMed ID: 20155899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas.
    Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA
    J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic mobilization from sediments in microcosms under sulfate reduction.
    Sun J; Quicksall AN; Chillrud SN; Mailloux BJ; Bostick BC
    Chemosphere; 2016 Jun; 153():254-61. PubMed ID: 27037658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia.
    Kinsela AS; Collins RN; Waite TD
    Chemosphere; 2011 Feb; 82(6):879-87. PubMed ID: 21094969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.