These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19673288)

  • 1. Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples.
    Huber SG; Kotte K; Schöler HF; Williams J
    Environ Sci Technol; 2009 Jul; 43(13):4934-9. PubMed ID: 19673288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of volatile iodinated alkanes in soil: results from laboratory studies.
    Keppler F; Borchers R; Elsner P; Fahimi I; Pracht J; Schöler HF
    Chemosphere; 2003 Jul; 52(2):477-83. PubMed ID: 12738273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural abiotic formation of furans in soil.
    Huber SG; Wunderlich S; Schöler HF; Williams J
    Environ Sci Technol; 2010 Aug; 44(15):5799-804. PubMed ID: 20614942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of brominated trihalomethanes during chlorination or ozonation of natural organic matter extracts and model compounds in saline water.
    Liu ZQ; Shah AD; Salhi E; Bolotin J; von Gunten U
    Water Res; 2018 Oct; 143():492-502. PubMed ID: 29986257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic activity of the iron-coated pumice particles used as heterogeneous catalysts in the oxidation of natural organic matter by H2O2.
    Alver A; Karaarslan M; Kılıç A
    Environ Technol; 2016 Aug; 37(16):2040-7. PubMed ID: 26881482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples.
    Studenroth S; Huber SG; Kotte K; Schöler HF
    Environ Sci Technol; 2013 Feb; 47(3):1323-9. PubMed ID: 23311299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abiotic Bromination of Soil Organic Matter.
    Leri AC; Ravel B
    Environ Sci Technol; 2015 Nov; 49(22):13350-9. PubMed ID: 26468620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon suboxide, a highly reactive intermediate from the abiotic degradation of aromatic compounds in soil.
    Huber SG; Kilian G; Scholer HF
    Environ Sci Technol; 2007 Nov; 41(22):7802-6. PubMed ID: 18075091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of dissolved organic carbon (DOC) and trihalomethane (THM) precursor from peat soils.
    Chow AT; Tanji KK; Gao S
    Water Res; 2003 Nov; 37(18):4475-85. PubMed ID: 14511718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of chlorophenols in soil at natural pH by catalyzed hydrogen peroxide: the effect of soil organic matter.
    Yeh CK; Kao YA; Cheng CP
    Chemosphere; 2002 Jan; 46(1):67-73. PubMed ID: 11806534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl(-) and Br(-) on trihalomethane formation potential.
    Navalon S; Alvaro M; Garcia H
    Water Res; 2008 Aug; 42(14):3990-4000. PubMed ID: 18692215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified Fenton oxidation of diesel fuel in arctic soils rich in organic matter and iron.
    Sherwood MK; Cassidy DP
    Chemosphere; 2014 Oct; 113():56-61. PubMed ID: 25065790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trihalomethane hydrolysis in drinking water at elevated temperatures.
    Zhang XL; Yang HW; Wang XM; Karanfil T; Xie YF
    Water Res; 2015 Jul; 78():18-27. PubMed ID: 25898249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of disinfection byproducts (DBPs) by ozonation and peroxone process: Role of chloride on removal of DBP precursors.
    Deeudomwongsa P; Phattarapattamawong S; Andrew Lin KY
    Chemosphere; 2017 Oct; 184():1215-1222. PubMed ID: 28672704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation, modeling and validation of trihalomethanes (THM) in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilan and Sabak Bernam, Selangor, Malaysia.
    Abdullah MP; Yew CH; Ramli MS
    Water Res; 2003 Nov; 37(19):4637-44. PubMed ID: 14568050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pH on the speciation coefficients in models of bromide influence on the formation of trihalomethanes and haloacetic acids.
    Roccaro P; Korshin GV; Cook D; Chow CW; Drikas M
    Water Res; 2014 Oct; 62():117-26. PubMed ID: 24945979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter.
    Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY
    Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and inorganic byproducts of trihalomethane compounds sonodegradation.
    Shemer H; Narkis N
    Environ Sci Technol; 2004 Sep; 38(18):4856-9. PubMed ID: 15487796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance.
    Peng D; Saravia F; Abbt-Braun G; Horn H
    Water Res; 2016 Jan; 88():634-642. PubMed ID: 26575472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of bromide/iodide concentration and ratio on iodinated trihalomethane formation and speciation.
    Jones DB; Saglam A; Song H; Karanfil T
    Water Res; 2012 Jan; 46(1):11-20. PubMed ID: 22078225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.