These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19673469)

  • 1. Ternary protein adsorption onto brushes: strong versus weak.
    Halperin A; Kröger M
    Langmuir; 2009 Oct; 25(19):11621-34. PubMed ID: 19673469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary versus ternary adsorption of proteins onto PEG brushes.
    Halperin A; Fragneto G; Schollier A; Sferrazza M
    Langmuir; 2007 Oct; 23(21):10603-17. PubMed ID: 17803323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BSA adsorption on bimodal PEO brushes.
    Bosker WT; Iakovlev PA; Norde W; Cohen Stuart MA
    J Colloid Interface Sci; 2005 Jun; 286(2):496-503. PubMed ID: 15897063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: a self-consistent field theory.
    Feuz L; Leermakers FA; Textor M; Borisov O
    Langmuir; 2008 Jul; 24(14):7232-44. PubMed ID: 18558731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutron reflectometry from poly (ethylene-glycol) brushes binding anti-PEG antibodies: evidence of ternary adsorption.
    Schneck E; Berts I; Halperin A; Daillant J; Fragneto G
    Biomaterials; 2015 Apr; 46():95-104. PubMed ID: 25678119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron reflectometry elucidates density profiles of deuterated proteins adsorbed onto surfaces displaying poly(ethylene glycol) brushes: evidence for primary adsorption.
    Schneck E; Schollier A; Halperin A; Moulin M; Haertlein M; Sferrazza M; Fragneto G
    Langmuir; 2013 Nov; 29(46):14178-87. PubMed ID: 24144259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of PEI-PEG and PLL-PEG copolymer coatings on the prevention of protein fouling.
    Bergstrand A; Rahmani-Monfared G; Ostlund A; Nydén M; Holmberg K
    J Biomed Mater Res A; 2009 Mar; 88(3):608-15. PubMed ID: 18314896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers.
    Müller R; Eidt A; Hiller KA; Katzur V; Subat M; Schweikl H; Imazato S; Ruhl S; Schmalz G
    Biomaterials; 2009 Oct; 30(28):4921-9. PubMed ID: 19545893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chain conformation of a new class of PEG-based thermoresponsive polymer brushes grafted on silicon as determined by neutron reflectometry.
    Gao X; Kucerka N; Nieh MP; Katsaras J; Zhu S; Brash JL; Sheardown H
    Langmuir; 2009 Sep; 25(17):10271-8. PubMed ID: 19705903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces.
    Andruzzi L; Senaratne W; Hexemer A; Sheets ED; Ilic B; Kramer EJ; Baird B; Ober CK
    Langmuir; 2005 Mar; 21(6):2495-504. PubMed ID: 15752045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End terminal, poly(ethylene oxide) graft layers: surface forces and protein adsorption.
    Hamilton-Brown P; Gengenbach T; Griesser HJ; Meagher L
    Langmuir; 2009 Aug; 25(16):9149-56. PubMed ID: 19534458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pegylated polystyrene particles as a model system for artificial cells.
    Meng F; Engbers GH; Gessner A; Müller RH; Feijen J
    J Biomed Mater Res A; 2004 Jul; 70(1):97-106. PubMed ID: 15174113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density control of poly(ethylene glycol) layer to regulate cellular attachment.
    Satomi T; Nagasaki Y; Kobayashi H; Otsuka H; Kataoka K
    Langmuir; 2007 Jun; 23(12):6698-703. PubMed ID: 17480105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active protein-functionalized poly(poly(ethylene glycol) monomethacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization for potential biological applications.
    Xu FJ; Liu LY; Yang WT; Kang ET; Neoh KG
    Biomacromolecules; 2009 Jun; 10(6):1665-74. PubMed ID: 19402738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chain density and conformation on protein adsorption at PEG-grafted polyurethane surfaces.
    Chen H; Hu X; Zhang Y; Li D; Wu Z; Zhang T
    Colloids Surf B Biointerfaces; 2008 Feb; 61(2):237-43. PubMed ID: 17920250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating protein adsorption using a patchy protein-resistant brush.
    Gon S; Bendersky M; Ross JL; Santore MM
    Langmuir; 2010 Jul; 26(14):12147-54. PubMed ID: 20557060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End Point Versus Backbone Specificity Governs Characteristics of Antibody Binding to Poly(ethylene glycol) Brushes.
    Latza VM; Rodriguez-Loureiro I; Fragneto G; Schneck E
    Langmuir; 2018 Nov; 34(46):13946-13955. PubMed ID: 30354149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles.
    Nolan CM; Reyes CD; Debord JD; García AJ; Lyon LA
    Biomacromolecules; 2005; 6(4):2032-9. PubMed ID: 16004442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating gradients of two proteins by differential passive adsorption onto a PEG-density gradient.
    Vasilev K; Mierczynska A; Hook AL; Chan J; Voelcker NH; Short RD
    Biomaterials; 2010 Jan; 31(3):392-7. PubMed ID: 19811821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein insertion and patterning of PEG bearing langmuir monolayers.
    Dhruv H; Pepalla R; Taveras M; Britt DW
    Biotechnol Prog; 2006; 22(1):150-5. PubMed ID: 16454505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.