These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19673512)

  • 1. A variational approach to wetting of composite surfaces: is wetting of composite surfaces a one-dimensional or two-dimensional phenomenon?
    Bormashenko E
    Langmuir; 2009 Sep; 25(18):10451-4. PubMed ID: 19673512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair?
    Bormashenko E; Pogreb R; Whyman G; Erlich M
    Langmuir; 2007 Jun; 23(12):6501-3. PubMed ID: 17497815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hydrophobicity of rough polymer surfaces.
    Hirvi JT; Pakkanen TA
    J Phys Chem B; 2007 Apr; 111(13):3336-41. PubMed ID: 17388480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent contact angles for reactive wetting of smooth, rough, and heterogeneous surfaces calculated from the variational principles.
    Bormashenko E
    J Colloid Interface Sci; 2019 Mar; 537():597-603. PubMed ID: 30471614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles.
    Barbieri L; Wagner E; Hoffmann P
    Langmuir; 2007 Feb; 23(4):1723-34. PubMed ID: 17279650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface.
    Bormashenko E; Pogreb R; Whyman G; Erlich M
    Langmuir; 2007 Nov; 23(24):12217-21. PubMed ID: 17956134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting of nanogrooved polymer surfaces.
    Hirvi JT; Pakkanen TA
    Langmuir; 2007 Jul; 23(14):7724-9. PubMed ID: 17559245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental scanning electron microscopy study of the fine structure of the triple line and cassie-wenzel wetting transition for sessile drops deposited on rough polymer substrates.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Pogreb R; Barkay Z
    Langmuir; 2007 Apr; 23(8):4378-82. PubMed ID: 17367175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting and wetting transitions on copper-based super-hydrophobic surfaces.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC
    Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact angle and local wetting at contact line.
    Li R; Shan Y
    Langmuir; 2012 Nov; 28(44):15624-8. PubMed ID: 23066985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new wetting mechanism based upon triple contact line pinning.
    Liu J; Mei Y; Xia R
    Langmuir; 2011 Jan; 27(1):196-200. PubMed ID: 21117687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.
    Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH
    J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of rough surfaces with vibrated drops.
    Bormashenko E; Pogreb R; Stein T; Whyman G; Erlich M; Musin A; Machavariani V; Aurbach D
    Phys Chem Chem Phys; 2008 Jul; 10(27):4056-61. PubMed ID: 18597020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size.
    Liu B; Lange FF
    J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity.
    Porcheron F; Monson PA
    Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.