BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19673529)

  • 1. Regioselective biotransformation of (+)- and (-)-citronellene by the larvae of common cutworm ( Spodoptera litura ).
    Miyazawa M; Marumoto S; Masuda A; Kano H; Takechi H
    J Agric Food Chem; 2009 Sep; 57(17):7800-4. PubMed ID: 19673529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel compound, (2Z,6E)-1-hydroxy-3,7-dimethyl-2,6-octadien-8-oic acid produced from biotransformation of nerol by Spodoptera litura larvae.
    Ono T; Koutari S; Marumoto S; Miyazawa M
    J Oleo Sci; 2013; 62(5):313-8. PubMed ID: 23648406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regio- and stereoselective oxidation of (+)-Delta(3)-carene by the larvae of common cutworm (Spodoptera litura).
    Miyazawa M; Kano H
    J Agric Food Chem; 2010 Mar; 58(6):3855-8. PubMed ID: 20187604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of alpha-terpineol by the larvae of common cutworm (Spodoptera litura).
    Miyazawa M; Ohsawa M
    J Agric Food Chem; 2002 Aug; 50(17):4916-8. PubMed ID: 12166982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of (-)-(1R,4S)-Menthone and (+)-(1S,4R)-Menthone by the Common Cutworm Spodoptera litura Larvae.
    Marumoto S; Okuno Y; Hagiwara Y; Miyazawa M
    J Oleo Sci; 2017 Aug; 66(8):883-888. PubMed ID: 28701651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of (+)-Carvone and (-)-Carvone by the Common Cutworm Spodoptera litura Larvae.
    Marumoto S; Okuno Y; Hagiwara Y; Miyazawa M
    J Oleo Sci; 2018 Oct; 67(10):1253-1257. PubMed ID: 30210079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of (R)- and (S)-terpinen-4-ol by the larvae of common cutworm (Spodoptera litura).
    Miyazawa M; Kumagae S
    J Agric Food Chem; 2001 Sep; 49(9):4312-4. PubMed ID: 11559130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of gamma-terpinene and (-)-alpha-phellandrene by the larvae of common cutworm (Spodoptera litura).
    Miyazawa M; Wada T
    J Agric Food Chem; 2000 Jul; 48(7):2893-5. PubMed ID: 10898642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of beta-myrcene by the larvae of common cutworm (Spodoptera litura).
    Miyazawa M; Murata T
    J Agric Food Chem; 2000 Feb; 48(2):123-5. PubMed ID: 10691603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of serotonin derivatives by the larvae of common cutworm (Spodoptera litura).
    Takahashi T; Miyazawa M
    Nat Prod Res; 2013; 27(6):592-6. PubMed ID: 22889206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of isoflavones by the larvae of the common cutworm (Spodoptera litura).
    Takahashi K; Araki H; Miyazawa M
    Chem Pharm Bull (Tokyo); 2006 May; 54(5):719-21. PubMed ID: 16651777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of thymol and trans-anethole in larvae of Spodoptera litura and Trichoplusia ni (Lepidoptera: Noctuidae).
    Passreiter CM; Wilson J; Andersen R; Isman MB
    J Agric Food Chem; 2004 May; 52(9):2549-51. PubMed ID: 15113155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total synthesis of epothilones using functionalised allylstannanes for remote stereocontrol.
    Martin N; Thomas EJ
    Org Biomol Chem; 2012 Oct; 10(39):7952-64. PubMed ID: 22940725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the cytochrome P450-mediated oxidative metabolism of the terpene alcohol linalool: indication of biological epoxidation.
    Meesters RJ; Duisken M; Hollender J
    Xenobiotica; 2007 Jun; 37(6):604-17. PubMed ID: 17614007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and configuration of racemic and optically active analgesic cycloaminoalkylnaphthalenes.
    Ghislandi V; Collina S; Azzolina O; Barbieri A; Lanza E; Tadini C
    Chirality; 1999; 11(1):21-8. PubMed ID: 9914649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of sinesetin by the larvae of the common cutworm (Spodoptera litura).
    Okuno Y; Miyazawa M
    Biol Pharm Bull; 2004 Aug; 27(8):1289-92. PubMed ID: 15305039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient incorporation of free oxygen into volicitin in Spodoptera litura common cutworm larvae.
    Ishikawa C; Yoshinaga N; Aboshi T; Nishida R; Mori N
    Biosci Biotechnol Biochem; 2009 Aug; 73(8):1883-5. PubMed ID: 19661708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of in vitro rat metabolites of 1-phenylcyclohexene.
    Cook CE; Brine DR; Tallent CR
    Drug Metab Dispos; 1984; 12(2):186-92. PubMed ID: 6144484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of (+)- and (-)-menthol by the larvae of common cutworm (Spodoptera litura).
    Miyazawa M; Kumagae S; Kameoka H
    J Agric Food Chem; 1999 Sep; 47(9):3938-40. PubMed ID: 10552747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of trimethyl (2S,3R)- and (2R,3R)-[2-2H1]-homocitrates and dimethyl (2S,3R)- and (2R,3R)-[2-2H1]-homocitrate lactones-an assay for the stereochemical outcome of the reaction catalysed both by homocitrate synthase and by the Nif-V protein.
    Tavassoli A; Duffy JE; Young DW
    Org Biomol Chem; 2006 Feb; 4(3):569-80. PubMed ID: 16446817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.