These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19673532)

  • 1. Plasmonic Fabry-Pérot nanocavity.
    Sorger VJ; Oulton RF; Yao J; Bartal G; Zhang X
    Nano Lett; 2009 Oct; 9(10):3489-93. PubMed ID: 19673532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing complex reflection coefficients in one-dimensional surface plasmon polariton waveguides and cavities using STEM EELS.
    Schoen DT; Atre AC; García-Etxarri A; Dionne JA; Brongersma ML
    Nano Lett; 2015 Jan; 15(1):120-6. PubMed ID: 25545292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Nanotechnology; 2012 Jul; 23(27):275201. PubMed ID: 22706495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoimprinted plasmonic nanocavity arrays.
    Kim S; Xuan Y; Drachev VP; Varghese LT; Fan L; Qi M; Webb KJ
    Opt Express; 2013 Jul; 21(13):15081-9. PubMed ID: 23842295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Structures, Materials and Lenses for Optical Lithography beyond the Diffraction Limit: A Review.
    Wang C; Zhang W; Zhao Z; Wang Y; Gao P; Luo Y; Luo X
    Micromachines (Basel); 2016 Jul; 7(7):. PubMed ID: 30404291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic modes of extreme subwavelength nanocavities.
    Petschulat J; Helgert C; Steinert M; Bergner N; Rockstuhl C; Lederer F; Pertsch T; Tünnermann A; Kley EB
    Opt Lett; 2010 Aug; 35(16):2693-5. PubMed ID: 20717426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabry-Perot Cavity Control for Tunable Raman Scattering.
    Kim T; Lee J; Yu ES; Lee S; Woo H; Kwak J; Chung S; Choi I; Ryu YS
    Small; 2023 Jul; 19(29):e2207003. PubMed ID: 37017491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips.
    Böckmann H; Liu S; Müller M; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2019 Jun; 19(6):3597-3602. PubMed ID: 31070928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh-Q metallic nanocavity resonances with externally-amplified intracavity feedback.
    Yoon JW; Song SH; Magnusson R
    Sci Rep; 2014 Nov; 4():7124. PubMed ID: 25410130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry-Pérot Resonator.
    Konrad A; Kern AM; Brecht M; Meixner AJ
    Nano Lett; 2015 Jul; 15(7):4423-8. PubMed ID: 26061892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lasing in plasmon-induced transparency nanocavity.
    Deng ZL; Dong JW
    Opt Express; 2013 Aug; 21(17):20291-302. PubMed ID: 24105575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Control of Nanocavities with Tunable Metal Oxides.
    Kim J; Carnemolla EG; DeVault C; Shaltout AM; Faccio D; Shalaev VM; Kildishev AV; Ferrera M; Boltasseva A
    Nano Lett; 2018 Feb; 18(2):740-746. PubMed ID: 29283583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridized plasmonic modes and Fabry-Perot effect in nanoscale bowtie aperture waveguide.
    Zhang L; Qin J; Guo S; Wang L
    Opt Express; 2019 Jun; 27(12):17221-17227. PubMed ID: 31252935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media.
    Zhong ZJ; Xu Y; Lan S; Dai QF; Wu LJ
    Opt Express; 2010 Jan; 18(1):79-86. PubMed ID: 20173825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the phase and amplitude of plasmon sources at a subwavelength scale.
    Lerosey G; Pile DF; Matheu P; Bartal G; Zhang X
    Nano Lett; 2009 Jan; 9(1):327-31. PubMed ID: 19102691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity.
    Miyazaki HT; Kurokawa Y
    Phys Rev Lett; 2006 Mar; 96(9):097401. PubMed ID: 16606313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Opt Express; 2011 Aug; 19(18):17075-85. PubMed ID: 21935068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.