BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19673541)

  • 1. Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA.
    Marcheschi RJ; Mouzakis KD; Butcher SE
    ACS Chem Biol; 2009 Oct; 4(10):844-54. PubMed ID: 19673541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the HIV-1 frameshift site RNA bound to a small molecule inhibitor of viral replication.
    Marcheschi RJ; Tonelli M; Kumar A; Butcher SE
    ACS Chem Biol; 2011 Aug; 6(8):857-64. PubMed ID: 21648432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity.
    Garcia-Miranda P; Becker JT; Benner BE; Blume A; Sherer NM; Butcher SE
    J Virol; 2016 Aug; 90(15):6906-6917. PubMed ID: 27194769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop.
    Marcheschi RJ; Staple DW; Butcher SE
    J Mol Biol; 2007 Oct; 373(3):652-63. PubMed ID: 17868691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators.
    Cardno TS; Shimaki Y; Sleebs BE; Lackovic K; Parisot JP; Moss RM; Crowe-McAuliffe C; Mathew SF; Edgar CD; Kleffmann T; Tate WP
    PLoS One; 2015; 10(10):e0139036. PubMed ID: 26447468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
    Staple DW; Butcher SE
    J Mol Biol; 2005 Jun; 349(5):1011-23. PubMed ID: 15927637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of the HIV-1 frameshift inducing stem-loop RNA.
    Staple DW; Butcher SE
    Nucleic Acids Res; 2003 Aug; 31(15):4326-31. PubMed ID: 12888491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of peptides interfering with a ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Théberge-Julien G; Brakier-Gingras L; Heveker N
    RNA; 2008 May; 14(5):981-91. PubMed ID: 18367719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome.
    Mouzakis KD; Lang AL; Vander Meulen KA; Easterday PD; Butcher SE
    Nucleic Acids Res; 2013 Feb; 41(3):1901-13. PubMed ID: 23248007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function analysis of the ribosomal frameshifting signal of two human immunodeficiency virus type 1 isolates with increased resistance to viral protease inhibitors.
    Girnary R; King L; Robinson L; Elston R; Brierley I
    J Gen Virol; 2007 Jan; 88(Pt 1):226-235. PubMed ID: 17170455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Baril M; Brakier-Gingras L
    Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative mutational analysis of cis-acting RNA signals for translational frameshifting in HIV-1 and HTLV-2.
    Kim YG; Maas S; Rich A
    Nucleic Acids Res; 2001 Mar; 29(5):1125-31. PubMed ID: 11222762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the RNA signal essential for translational frameshifting in HIV-1.
    Gaudin C; Mazauric MH; Traïkia M; Guittet E; Yoshizawa S; Fourmy D
    J Mol Biol; 2005 Jun; 349(5):1024-35. PubMed ID: 15907937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.
    Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q
    J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of the HIV-1 frameshift element RNA.
    Low JT; Garcia-Miranda P; Mouzakis KD; Gorelick RJ; Butcher SE; Weeks KM
    Biochemistry; 2014 Jul; 53(26):4282-91. PubMed ID: 24926888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanidinoneomycin B recognition of an HIV-1 RNA helix.
    Staple DW; Venditti V; Niccolai N; Elson-Schwab L; Tor Y; Butcher SE
    Chembiochem; 2008 Jan; 9(1):93-102. PubMed ID: 18058789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.
    Brierley I; Meredith MR; Bloys AJ; Hagervall TG
    J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential stability of the mRNA secondary structures in the frameshift site of various HIV type 1 viruses.
    Chang SY; Sutthent R; Auewarakul P; Apichartpiyakul C; Essex M; Lee TH
    AIDS Res Hum Retroviruses; 1999 Nov; 15(17):1591-6. PubMed ID: 10580411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of ribosomal pausing during programmed -1 translational frameshifting.
    Lopinski JD; Dinman JD; Bruenn JA
    Mol Cell Biol; 2000 Feb; 20(4):1095-103. PubMed ID: 10648594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.