These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1967491)

  • 1. What excitotoxin kills striatal neurons in Huntington's disease? Clues from neurochemical studies.
    Perry TL; Hansen S
    Neurology; 1990 Jan; 40(1):20-4. PubMed ID: 1967491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington's disease.
    Cross AJ; Slater P; Reynolds GP
    Neurosci Lett; 1986 Jun; 67(2):198-202. PubMed ID: 2873534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease.
    Ellison DW; Beal MF; Mazurek MF; Malloy JR; Bird ED; Martin JB
    Brain; 1987 Dec; 110 ( Pt 6)():1657-73. PubMed ID: 2892568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased muscarinic receptor concentration in post-mortem brain in Huntington's chorea.
    Hiley CR; Bird ED
    Brain Res; 1974 Nov; 80(2):355-8. PubMed ID: 4278580
    [No Abstract]   [Full Text] [Related]  

  • 5. Dementia in Huntington's disease is associated with neurochemical deficits in the caudate nucleus, not the cerebral cortex.
    Reynolds GP; Pearson SJ; Heathfield KW
    Neurosci Lett; 1990 May; 113(1):95-100. PubMed ID: 1973277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABA content and glutamic acid decarboxylase activity in brain of Huntington's chorea patients and control subjects.
    Urquhart N; Perry TL; Hansen S; Kennedy J
    J Neurochem; 1975 May; 24(5):1071-5. PubMed ID: 124764
    [No Abstract]   [Full Text] [Related]  

  • 7. Neurochemical correlates of caudate atrophy in Huntington's disease.
    Padowski JM; Weaver KE; Richards TL; Laurino MY; Samii A; Aylward EH; Conley KE
    Mov Disord; 2014 Mar; 29(3):327-35. PubMed ID: 24442623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Huntington's disease: changes in striatal proteins reflect astrocytic gliosis.
    Selkoe DJ; Salazar FJ; Abraham C; Kosik KS
    Brain Res; 1982 Aug; 245(1):117-25. PubMed ID: 6214299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diminished hippocalcin expression in Huntington's disease brain does not account for increased striatal neuron vulnerability as assessed in primary neurons.
    Rudinskiy N; Kaneko YA; Beesen AA; Gokce O; Régulier E; Déglon N; Luthi-Carter R
    J Neurochem; 2009 Oct; 111(2):460-72. PubMed ID: 19686238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical studies in Huntington's chorea. VI. Composition of striatal neutral lipids, phospholipids, glycolipids, fatty acids, and amino acids.
    Borri PF; Op den Velde WM; Hooghwinkel GJ; Bruyn GW
    Neurology; 1967 Feb; 17(2):172-8. PubMed ID: 4225234
    [No Abstract]   [Full Text] [Related]  

  • 11. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice.
    Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A
    Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Huntington's disease: studies on brain free amino acids.
    Bonilla E; Prasad AL; Arrieta A
    Life Sci; 1988; 42(11):1153-8. PubMed ID: 2894604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington's disease.
    Dure LS; Young AB; Penney JB
    Ann Neurol; 1991 Dec; 30(6):785-93. PubMed ID: 1665055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased glutamic acid and increased 5-hydroxytryptamine in Huntington's disease brain.
    Reynolds GP; Pearson SJ
    Neurosci Lett; 1987 Jul; 78(2):233-8. PubMed ID: 2442679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Huntington's chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia.
    Bird ED; Iversen LL
    Brain; 1974 Sep; 97(3):457-72. PubMed ID: 4157009
    [No Abstract]   [Full Text] [Related]  

  • 16. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease.
    Antonini A; Leenders KL; Spiegel R; Meier D; Vontobel P; Weigell-Weber M; Sanchez-Pernaute R; de Yébenez JG; Boesiger P; Weindl A; Maguire RP
    Brain; 1996 Dec; 119 ( Pt 6)():2085-95. PubMed ID: 9010012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases.
    Greenamyre JT; Penney JB; Young AB; D'Amato CJ; Hicks SP; Shoulson I
    Science; 1985 Mar; 227(4693):1496-9. PubMed ID: 2858129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington's disease.
    Dawbarn D; De Quidt ME; Emson PC
    Brain Res; 1985 Aug; 340(2):251-60. PubMed ID: 2862959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea.
    Huot P; Lévesque M; Parent A
    Brain; 2007 Jan; 130(Pt 1):222-32. PubMed ID: 17142832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal metabolite changes in Huntington's disease during disease onset.
    van den Bogaard SJ; Dumas EM; Teeuwisse WM; Kan HE; Webb A; van Buchem MA; Roos RA; van der Grond J
    J Huntingtons Dis; 2014; 3(4):377-86. PubMed ID: 25575959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.