These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 19675009)
1. Evidence for regular ongoing introductions of mosquito disease vectors into the Galapagos Islands. Bataille A; Cunningham AA; Cedeño V; Cruz M; Eastwood G; Fonseca DM; Causton CE; Azuero R; Loayza J; Martinez JD; Goodman SJ Proc Biol Sci; 2009 Nov; 276(1674):3769-75. PubMed ID: 19675009 [TBL] [Abstract][Full Text] [Related]
2. The vector ecology of introduced Culex quinquefasciatus populations, and implications for future risk of West Nile virus emergence in the Galápagos archipelago. Eastwood G; Cunningham AA; Kramer LD; Goodman SJ Med Vet Entomol; 2019 Mar; 33(1):44-55. PubMed ID: 30168152 [TBL] [Abstract][Full Text] [Related]
3. West Nile virus vector competency of Culex quinquefasciatus mosquitoes in the Galapagos Islands. Eastwood G; Kramer LD; Goodman SJ; Cunningham AA Am J Trop Med Hyg; 2011 Sep; 85(3):426-33. PubMed ID: 21896799 [TBL] [Abstract][Full Text] [Related]
4. Assessing the blood meal hosts of Culex quinquefasciatus and Aedes taeniorhynchus in Isla Santa Cruz, Galápagos. Asigau S; Salah S; Parker PG Parasit Vectors; 2019 Dec; 12(1):584. PubMed ID: 31842984 [TBL] [Abstract][Full Text] [Related]
5. Natural colonization and adaptation of a mosquito species in Galapagos and its implications for disease threats to endemic wildlife. Bataille A; Cunningham AA; Cedeño V; Patiño L; Constantinou A; Kramer LD; Goodman SJ Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10230-5. PubMed ID: 19502421 [TBL] [Abstract][Full Text] [Related]
6. Adaptation, isolation by distance and human-mediated transport determine patterns of gene flow among populations of the disease vector Aedes taeniorhynchus in the Galapagos Islands. Bataille A; Cunningham AA; Cruz M; Cedeño V; Goodman SJ Infect Genet Evol; 2011 Dec; 11(8):1996-2003. PubMed ID: 21968211 [TBL] [Abstract][Full Text] [Related]
7. Aedes taeniorhynchus vectorial capacity informs a pre-emptive assessment of West Nile virus establishment in Galápagos. Eastwood G; Goodman SJ; Cunningham AA; Kramer LD Sci Rep; 2013; 3():1519. PubMed ID: 23519190 [TBL] [Abstract][Full Text] [Related]
8. The distribution of mosquitoes across an altitudinal gradient in the Galapagos Islands. Asigau S; Hartman DA; Higashiguchi JM; Parker PG J Vector Ecol; 2017 Dec; 42(2):243-253. PubMed ID: 29125252 [TBL] [Abstract][Full Text] [Related]
9. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Fonseca DM; LaPointe DA; Fleischer RC Mol Ecol; 2000 Nov; 9(11):1803-14. PubMed ID: 11091316 [TBL] [Abstract][Full Text] [Related]
10. Spread of the West Nile virus vector Culex modestus and the potential malaria vector Anopheles hyrcanus in central Europe. Votýpka J; Seblová V; Rádrová J J Vector Ecol; 2008 Dec; 33(2):269-77. PubMed ID: 19263846 [TBL] [Abstract][Full Text] [Related]
11. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Fonseca DM; Smith JL; Wilkerson RC; Fleischer RC Am J Trop Med Hyg; 2006 Feb; 74(2):284-9. PubMed ID: 16474085 [TBL] [Abstract][Full Text] [Related]
12. Vector competence of two Indian populations of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes to three West Nile virus strains. Sudeep AB; Mandar P; Ghodke YK; George RP; Gokhale MD J Vector Borne Dis; 2015 Sep; 52(3):185-92. PubMed ID: 26418647 [TBL] [Abstract][Full Text] [Related]
13. Landscape factors influencing the spatial distribution and abundance of mosquito vector Culex quinquefasciatus (Diptera: Culicidae) in a mixed residential-agricultural community in Hawai'i. Reiter ME; LaPointe DA J Med Entomol; 2007 Sep; 44(5):861-8. PubMed ID: 17915520 [TBL] [Abstract][Full Text] [Related]
14. Culex quinquefasciatus (Diptera: Culicidae) as a potential West Nile virus vector in Tucson, Arizona: blood meal analysis indicates feeding on both humans and birds. Zinser M; Ramberg F; Willott E J Insect Sci; 2004; 4():20. PubMed ID: 15861236 [TBL] [Abstract][Full Text] [Related]
15. Predicting pathogen introduction: West Nile virus spread to Galáipagos. Kilpatrick AM; Daszak P; Goodman SJ; Rogg H; Kramer LD; Cedeño V; Cunningham AA Conserv Biol; 2006 Aug; 20(4):1224-31. PubMed ID: 16922238 [TBL] [Abstract][Full Text] [Related]
16. Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago. Dudaniec RY; Gardner MG; Donnellan S; Kleindorfer S BMC Ecol; 2008 Jul; 8():13. PubMed ID: 18671861 [TBL] [Abstract][Full Text] [Related]
17. Surveillance of above- and below-ground mosquito breeding habitats in a rural midwestern community: baseline data for larvicidal control measures against West Nile Virus vectors. Kronenwetter-Koepel TA; Meece JK; Miller CA; Reed KD Clin Med Res; 2005 Feb; 3(1):3-12. PubMed ID: 15962015 [TBL] [Abstract][Full Text] [Related]
18. Larval habitat for the avian malaria vector Culex quinquefasciatus (Diptera: Culicidae) in altered mid-elevation mesic-dry forests in Hawai'i. Reiter ME; Lapointe DA J Vector Ecol; 2009 Dec; 34(2):208-16. PubMed ID: 20836824 [TBL] [Abstract][Full Text] [Related]
19. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. Göertz GP; Fros JJ; Miesen P; Vogels CBF; van der Bent ML; Geertsema C; Koenraadt CJM; van Rij RP; van Oers MM; Pijlman GP J Virol; 2016 Nov; 90(22):10145-10159. PubMed ID: 27581979 [TBL] [Abstract][Full Text] [Related]
20. Host selection and parasite infection in Aedes taeniorhynchus, endemic disease vector in the Galápagos Islands. Bataille A; Fournié G; Cruz M; Cedeño V; Parker PG; Cunningham AA; Goodman SJ Infect Genet Evol; 2012 Dec; 12(8):1831-41. PubMed ID: 22921730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]