These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19675111)

  • 1. A genome-wide compilation of the two-component systems in Lotus japonicus.
    Ishida K; Niwa Y; Yamashino T; Mizuno T
    DNA Res; 2009 Aug; 16(4):237-47. PubMed ID: 19675111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversification of cytokinin phosphotransfer signaling genes in Medicago truncatula and other legume genomes.
    Tan S; Debellé F; Gamas P; Frugier F; Brault M
    BMC Genomics; 2019 May; 20(1):373. PubMed ID: 31088345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti.
    Miri M; Janakirama P; Huebert T; Ross L; McDowell T; Orosz K; Markmann K; Szczyglowski K
    New Phytol; 2019 May; 222(3):1523-1537. PubMed ID: 30636324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation.
    Held M; Hou H; Miri M; Huynh C; Ross L; Hossain MS; Sato S; Tabata S; Perry J; Wang TL; Szczyglowski K
    Plant Cell; 2014 Feb; 26(2):678-94. PubMed ID: 24585837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules.
    Holt DB; Gupta V; Meyer D; Abel NB; Andersen SU; Stougaard J; Markmann K
    New Phytol; 2015 Oct; 208(1):241-56. PubMed ID: 25967282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains.
    Yamaya-Ito H; Shimoda Y; Hakoyama T; Sato S; Kaneko T; Hossain MS; Shibata S; Kawaguchi M; Hayashi M; Kouchi H; Umehara Y
    Plant J; 2018 Jan; 93(1):5-16. PubMed ID: 29086445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases.
    Ried MK; Antolín-Llovera M; Parniske M
    Elife; 2014 Nov; 3():. PubMed ID: 25422918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lotus SHAGGY-like kinase 1 is required to suppress nodulation in Lotus japonicus.
    Garagounis C; Tsikou D; Plitsi PK; Psarrakou IS; Avramidou M; Stedel C; Anagnostou M; Georgopoulou ME; Papadopoulou KK
    Plant J; 2019 Apr; 98(2):228-242. PubMed ID: 30570783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of localized auxin response during spontaneous nodule development in Lotus japonicus.
    Suzaki T; Ito M; Kawaguchi M
    Plant Signal Behav; 2013 Mar; 8(3):e23359. PubMed ID: 23299335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural variation identifies a Pxy gene controlling vascular organisation and formation of nodules and lateral roots in Lotus japonicus.
    Kawaharada Y; Sandal N; Gupta V; Jin H; Kawaharada M; Taniuchi M; Ruman H; Nadzieja M; Andersen KR; Schneeberger K; Stougaard J; Andersen SU
    New Phytol; 2021 Jun; 230(6):2459-2473. PubMed ID: 33759450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance.
    Sun ZM; Zhou ML; Xiao XG; Tang YX; Wu YM
    Funct Integr Genomics; 2014 Sep; 14(3):453-66. PubMed ID: 24777608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus.
    Kouchi H; Shimomura K; Hata S; Hirota A; Wu GJ; Kumagai H; Tajima S; Suganuma N; Suzuki A; Aoki T; Hayashi M; Yokoyama T; Ohyama T; Asamizu E; Kuwata C; Shibata D; Tabata S
    DNA Res; 2004 Aug; 11(4):263-74. PubMed ID: 15500251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis.
    Nakagawa T; Kaku H; Shimoda Y; Sugiyama A; Shimamura M; Takanashi K; Yazaki K; Aoki T; Shibuya N; Kouchi H
    Plant J; 2011 Jan; 65(2):169-80. PubMed ID: 21223383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Quality Genome Sequence of Model Legume
    Li H; Jiang F; Wu P; Wang K; Cao Y
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32365501
    [No Abstract]   [Full Text] [Related]  

  • 15. Endoreduplication-mediated initiation of symbiotic organ development in Lotus japonicus.
    Suzaki T; Ito M; Yoro E; Sato S; Hirakawa H; Takeda N; Kawaguchi M
    Development; 2014 Jun; 141(12):2441-5. PubMed ID: 24850853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators.
    Op den Camp RH; De Mita S; Lillo A; Cao Q; Limpens E; Bisseling T; Geurts R
    Plant Physiol; 2011 Dec; 157(4):2013-22. PubMed ID: 22034625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation.
    Tapia G; Morales-Quintana L; Parra C; Berbel A; Alcorta M
    Plant Mol Biol; 2013 Jul; 82(4-5):485-501. PubMed ID: 23733601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct signaling routes mediate intercellular and intracellular rhizobial infection in Lotus japonicus.
    Montiel J; Reid D; Grønbæk TH; Benfeldt CM; James EK; Ott T; Ditengou FA; Nadzieja M; Kelly S; Stougaard J
    Plant Physiol; 2021 Apr; 185(3):1131-1147. PubMed ID: 33793909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism.
    Vriet C; Welham T; Brachmann A; Pike M; Pike J; Perry J; Parniske M; Sato S; Tabata S; Smith AM; Wang TL
    Plant Physiol; 2010 Oct; 154(2):643-55. PubMed ID: 20699404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis.
    Pareek A; Singh A; Kumar M; Kushwaha HR; Lynn AM; Singla-Pareek SL
    Plant Physiol; 2006 Oct; 142(2):380-97. PubMed ID: 16891544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.