BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19675128)

  • 1. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation.
    Cuykendall TN; Houston DW
    Development; 2009 Sep; 136(18):3057-65. PubMed ID: 19675128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification.
    Mei W; Jin Z; Lai F; Schwend T; Houston DW; King ML; Yang J
    Development; 2013 Jun; 140(11):2334-44. PubMed ID: 23615278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.
    Olson DJ; Oh D; Houston DW
    Dev Biol; 2015 May; 401(2):249-63. PubMed ID: 25753733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical depth and differential transport of vegetally localized dorsal and germ line determinants in the zebrafish embryo.
    Welch E; Pelegri F
    Bioarchitecture; 2014; 5(1-2):13-26. PubMed ID: 26528729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway.
    Marikawa Y; Li Y; Elinson RP
    Dev Biol; 1997 Nov; 191(1):69-79. PubMed ID: 9356172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction.
    Ge X; Grotjahn D; Welch E; Lyman-Gingerich J; Holguin C; Dimitrova E; Abrams EW; Gupta T; Marlow FL; Yabe T; Adler A; Mullins MC; Pelegri F
    PLoS Genet; 2014 Jun; 10(6):e1004422. PubMed ID: 24967891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants.
    Houston DW; Elliott KL; Coppenrath K; Wlizla M; Horb ME
    Development; 2022 Sep; 149(17):. PubMed ID: 35946588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The maternally localized RNA fatvg is required for cortical rotation and germ cell formation.
    Chan AP; Kloc M; Larabell CA; LeGros M; Etkin LD
    Mech Dev; 2007 May; 124(5):350-63. PubMed ID: 17376659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trim36/Haprin plays a critical role in the arrangement of somites during Xenopus embryogenesis.
    Yoshigai E; Kawamura S; Kuhara S; Tashiro K
    Biochem Biophys Res Commun; 2009 Jan; 378(3):428-32. PubMed ID: 19032936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GSK-3 activity is critical for the orientation of the cortical microtubules and the dorsoventral axis determination in zebrafish embryos.
    Shao M; Lin Y; Liu Z; Zhang Y; Wang L; Liu C; Zhang H
    PLoS One; 2012; 7(5):e36655. PubMed ID: 22574208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer.
    Laurent MN; Blitz IL; Hashimoto C; Rothbächer U; Cho KW
    Development; 1997 Dec; 124(23):4905-16. PubMed ID: 9428427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/beta-catenin signaling pathway.
    Marikawa Y; Elinson RP
    Mech Dev; 1999 Dec; 89(1-2):93-102. PubMed ID: 10559484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus.
    Zhu X; Xing R; Tan R; Dai R; Tao Q
    Mech Dev; 2017 Oct; 147():28-36. PubMed ID: 28807725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of METRO pathway localized molecules to the organization of the germ cell lineage.
    Kloc M; Larabell C; Chan AP; Etkin LD
    Mech Dev; 1998 Jul; 75(1-2):81-93. PubMed ID: 9739112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xrel3/XrelA attenuates β-catenin-mediated transcription during mesoderm formation in Xenopus embryos.
    Kennedy MW; Kao KR
    Biochem J; 2011 Apr; 435(1):247-57. PubMed ID: 21214516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical rotation and messenger RNA localization in Xenopus axis formation.
    Houston DW
    Wiley Interdiscip Rev Dev Biol; 2012; 1(3):371-88. PubMed ID: 23801488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PAPC and the Wnt5a/Ror2 pathway control the invagination of the otic placode in Xenopus.
    Jung B; Köhler A; Schambony A; Wedlich D
    BMC Dev Biol; 2011 Jun; 11():36. PubMed ID: 21663658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus.
    Colozza G; De Robertis EM
    Differentiation; 2014 Jul; 88(1):17-26. PubMed ID: 24798204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Move it or lose it: axis specification in Xenopus.
    Weaver C; Kimelman D
    Development; 2004 Aug; 131(15):3491-9. PubMed ID: 15262887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vegetal localization of maternal mRNAs is disrupted by VegT depletion.
    Heasman J; Wessely O; Langland R; Craig EJ; Kessler DS
    Dev Biol; 2001 Dec; 240(2):377-86. PubMed ID: 11784070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.