These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 19675149)
1. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Muñoz-Bertomeu J; Cascales-Miñana B; Mulet JM; Baroja-Fernández E; Pozueta-Romero J; Kuhn JM; Segura J; Ros R Plant Physiol; 2009 Oct; 151(2):541-58. PubMed ID: 19675149 [TBL] [Abstract][Full Text] [Related]
2. A critical role of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development. Muñoz-Bertomeu J; Cascales-Miñana B; Alaiz M; Segura J; Ros R Plant Signal Behav; 2010 Jan; 5(1):67-9. PubMed ID: 20592814 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase mutants. Flores-Tornero M; Anoman AD; Rosa-Téllez S; Toujani W; Weber AP; Eisenhut M; Kurz S; Alseekh S; Fernie AR; Muñoz-Bertomeu J; Ros R Plant J; 2017 Mar; 89(6):1146-1158. PubMed ID: 27984670 [TBL] [Abstract][Full Text] [Related]
4. Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis. Anoman AD; Muñoz-Bertomeu J; Rosa-Téllez S; Flores-Tornero M; Serrano R; Bueso E; Fernie AR; Segura J; Ros R Plant Physiol; 2015 Nov; 169(3):1619-37. PubMed ID: 26134167 [TBL] [Abstract][Full Text] [Related]
6. Interactions between abscisic acid and plastidial glycolysis in Arabidopsis. Muñoz-Bertomeu J; Anoman AD; Toujani W; Cascales-Miñana B; Flores-Tornero M; Ros R Plant Signal Behav; 2011 Jan; 6(1):157-9. PubMed ID: 21248489 [TBL] [Abstract][Full Text] [Related]
7. Functional characterization of the plastidial 3-phosphoglycerate dehydrogenase family in Arabidopsis. Toujani W; Muñoz-Bertomeu J; Flores-Tornero M; Rosa-Téllez S; Anoman AD; Alseekh S; Fernie AR; Ros R Plant Physiol; 2013 Nov; 163(3):1164-78. PubMed ID: 24058165 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism. Muñoz-Bertomeu J; Bermúdez MA; Segura J; Ros R J Exp Bot; 2011 Jan; 62(3):1229-39. PubMed ID: 21068209 [TBL] [Abstract][Full Text] [Related]
9. The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for viable pollen development in Arabidopsis. Muñoz-Bertomeu J; Cascales-Miñana B; Irles-Segura A; Mateu I; Nunes-Nesi A; Fernie AR; Segura J; Ros R Plant Physiol; 2010 Apr; 152(4):1830-41. PubMed ID: 20107025 [TBL] [Abstract][Full Text] [Related]
10. Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation. Guo L; Ma F; Wei F; Fanella B; Allen DK; Wang X Plant Cell; 2014 Jul; 26(7):3023-35. PubMed ID: 24989043 [TBL] [Abstract][Full Text] [Related]
11. Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Vescovi M; Zaffagnini M; Festa M; Trost P; Lo Schiavo F; Costa A Plant Physiol; 2013 May; 162(1):333-46. PubMed ID: 23569110 [TBL] [Abstract][Full Text] [Related]
12. The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase. Anoman AD; Flores-Tornero M; Rosa-Telléz S; Muñoz-Bertomeu J; Segura J; Ros R Plant Signal Behav; 2016; 11(3):e1128614. PubMed ID: 26953506 [TBL] [Abstract][Full Text] [Related]
13. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. Kirchsteiger K; Ferrández J; Pascual MB; González M; Cejudo FJ Plant Cell; 2012 Apr; 24(4):1534-48. PubMed ID: 22505729 [TBL] [Abstract][Full Text] [Related]
14. In vitro characterization of Arabidopsis CP12 isoforms reveals common biochemical and molecular properties. Marri L; Pesaresi A; Valerio C; Lamba D; Pupillo P; Trost P; Sparla F J Plant Physiol; 2010 Aug; 167(12):939-50. PubMed ID: 20399532 [TBL] [Abstract][Full Text] [Related]
15. Lack of malate valve capacities lead to improved N-assimilation and growth in transgenic A. thaliana plants. Selinski J; Scheibe R Plant Signal Behav; 2014; 9(7):e29057. PubMed ID: 25763488 [TBL] [Abstract][Full Text] [Related]
16. Requirement for the plastidial oxidative pentose phosphate pathway for nitrate assimilation in Arabidopsis. Bussell JD; Keech O; Fenske R; Smith SM Plant J; 2013 Aug; 75(4):578-91. PubMed ID: 23621281 [TBL] [Abstract][Full Text] [Related]
17. The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana. Peralta DA; Araya A; Busi MV; Gomez-Casati DF Int J Biochem Cell Biol; 2016 Jan; 70():48-56. PubMed ID: 26582368 [TBL] [Abstract][Full Text] [Related]
19. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Gao Y; Badejo AA; Sawa Y; Ishikawa T Plant Cell Physiol; 2012 Mar; 53(3):592-601. PubMed ID: 22323769 [TBL] [Abstract][Full Text] [Related]
20. The Arabidopsis BE1 gene, encoding a putative glycoside hydrolase localized in plastids, plays crucial roles during embryogenesis and carbohydrate metabolism. Wang X; Xue L; Sun J; Zuo J J Integr Plant Biol; 2010 Mar; 52(3):273-88. PubMed ID: 20377688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]