These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 19675297)

  • 1. Endogenous calcium buffering capacity of substantia nigral dopamine neurons.
    Foehring RC; Zhang XF; Lee JC; Callaway JC
    J Neurophysiol; 2009 Oct; 102(4):2326-33. PubMed ID: 19675297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels.
    Ji H; Hougaard C; Herrik KF; Strøbaek D; Christophersen P; Shepard PD
    Eur J Neurosci; 2009 May; 29(9):1883-95. PubMed ID: 19473240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SK- and h-current contribute to the generation of theta-like resonance of rat substantia nigra pars compacta dopaminergic neurons at hyperpolarized membrane potentials.
    Xue WN; Wang Y; He SM; Wang XL; Zhu JL; Gao GD
    Brain Struct Funct; 2012 Apr; 217(2):379-94. PubMed ID: 22108680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons.
    Blythe SN; Wokosin D; Atherton JF; Bevan MD
    J Neurosci; 2009 Dec; 29(49):15531-41. PubMed ID: 20007477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons.
    Putzier I; Kullmann PH; Horn JP; Levitan ES
    J Neurosci; 2009 Dec; 29(49):15414-9. PubMed ID: 20007466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical synapses between dopaminergic neurons of the substantia nigra pars compacta.
    Vandecasteele M; Glowinski J; Venance L
    J Neurosci; 2005 Jan; 25(2):291-8. PubMed ID: 15647472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra.
    Kang Y; Kitai ST
    Neurosci Res; 1993 Dec; 18(3):195-207. PubMed ID: 7907413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro.
    Atherton JF; Bevan MD
    J Neurosci; 2005 Sep; 25(36):8272-81. PubMed ID: 16148235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating intracellular Ca2+ concentrations and buffering in a dendritic inhibitory hippocampal interneuron.
    Liao CW; Lien CC
    Neuroscience; 2009 Dec; 164(4):1701-11. PubMed ID: 19782725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute effects of 6-hydroxydopamine on dopaminergic neurons of the rat substantia nigra pars compacta in vitro.
    Berretta N; Freestone PS; Guatteo E; de Castro D; Geracitano R; Bernardi G; Mercuri NB; Lipski J
    Neurotoxicology; 2005 Oct; 26(5):869-81. PubMed ID: 15890406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release.
    Patel JC; Witkovsky P; Avshalumov MV; Rice ME
    J Neurosci; 2009 May; 29(20):6568-79. PubMed ID: 19458227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled oscillator model of the dopaminergic neuron of the substantia nigra.
    Wilson CJ; Callaway JC
    J Neurophysiol; 2000 May; 83(5):3084-100. PubMed ID: 10805703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of firing activity by ATP in dopamine neurons of the rat substantia nigra pars compacta.
    Choi YM; Jang JY; Jang M; Kim SH; Kang YK; Cho H; Chung S; Park MK
    Neuroscience; 2009 May; 160(3):587-95. PubMed ID: 19272429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Ca2+ buffering in fast-spiking basket cells of rat hippocampus.
    Aponte Y; Bischofberger J; Jonas P
    J Physiol; 2008 Apr; 586(8):2061-75. PubMed ID: 18276734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC; Carruth M
    J Neurophysiol; 1999 Oct; 82(4):1895-901. PubMed ID: 10515978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium dynamics control K-ATP channel-mediated bursting in substantia nigra dopamine neurons: a combined experimental and modeling study.
    Knowlton C; Kutterer S; Roeper J; Canavier CC
    J Neurophysiol; 2018 Jan; 119(1):84-95. PubMed ID: 28978764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca(2+)-activated K+ conductance.
    Shepard PD; Bunney BS
    Exp Brain Res; 1991; 86(1):141-50. PubMed ID: 1756785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis.
    Freestone PS; Chung KK; Guatteo E; Mercuri NB; Nicholson LF; Lipski J
    Eur J Neurosci; 2009 Nov; 30(10):1849-59. PubMed ID: 19912331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual effects of L-DOPA on nigral dopaminergic neurons.
    Guatteo E; Yee A; McKearney J; Cucchiaroni ML; Armogida M; Berretta N; Mercuri NB; Lipski J
    Exp Neurol; 2013 Sep; 247():582-94. PubMed ID: 23481547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta.
    Yee AG; Forbes B; Cheung PY; Martini A; Burrell MH; Freestone PS; Lipski J
    J Neurochem; 2019 Feb; 148(4):462-479. PubMed ID: 30203851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.