These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19678638)

  • 1. Diastereoselective heterogeneous bromination of stilbene in a porous metal-organic framework.
    Jones SC; Bauer CA
    J Am Chem Soc; 2009 Sep; 131(35):12516-7. PubMed ID: 19678638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-induced amorphization and porosity modification in a metal-organic framework.
    Chapman KW; Halder GJ; Chupas PJ
    J Am Chem Soc; 2009 Dec; 131(48):17546-7. PubMed ID: 19916507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks.
    Bauer CA; Timofeeva TV; Settersten TB; Patterson BD; Liu VH; Simmons BA; Allendorf MD
    J Am Chem Soc; 2007 Jun; 129(22):7136-44. PubMed ID: 17503820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of water with MOF-5 simulated by molecular dynamics.
    Greathouse JA; Allendorf MD
    J Am Chem Soc; 2006 Aug; 128(33):10678-9. PubMed ID: 16910652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic functionalization of a metal-organic framework via a postsynthetic modification approach.
    Tanabe KK; Wang Z; Cohen SM
    J Am Chem Soc; 2008 Jul; 130(26):8508-17. PubMed ID: 18540671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted synthesis of a prototype MOF based on Zn4(O)(O2C)6 units and a nonlinear dicarboxylate ligand.
    Chun H; Jung H
    Inorg Chem; 2009 Jan; 48(2):417-9. PubMed ID: 19138140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.
    Luo J; Xu H; Liu Y; Zhao Y; Daemen LL; Brown C; Timofeeva TV; Ma S; Zhou HC
    J Am Chem Soc; 2008 Jul; 130(30):9626-7. PubMed ID: 18611006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepwise and hysteretic sorption of N(2), O(2), CO(2), and H(2) gases in a porous metal-organic framework [Zn(2)(BPnDC)(2)(bpy)].
    Park HJ; Suh MP
    Chem Commun (Camb); 2010 Jan; 46(4):610-2. PubMed ID: 20062878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal-organic framework.
    Eubank JF; Walsh RD; Eddaoudi M
    Chem Commun (Camb); 2005 Apr; (16):2095-7. PubMed ID: 15846411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular, active, and robust Lewis acid catalysts supported on a metal-organic framework.
    Tanabe KK; Cohen SM
    Inorg Chem; 2010 Jul; 49(14):6766-74. PubMed ID: 20565054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postsynthetic Addition of Ligand Struts in Metal-Organic Frameworks: Effect of Syn/Anti Addition on Framework Structures with Distinct Topologies.
    Xu X; Yang F; Han H; Xu Y; Wei W
    Inorg Chem; 2018 Mar; 57(5):2369-2372. PubMed ID: 29465235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interpenetrated framework material with hysteretic CO(2) uptake.
    Mulfort KL; Farha OK; Malliakas CD; Kanatzidis MG; Hupp JT
    Chemistry; 2010 Jan; 16(1):276-81. PubMed ID: 19918820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly porous interpenetrated metal-organic framework from the use of a novel nanosized organic linker.
    Manos MJ; Markoulides MS; Malliakas CD; Papaefstathiou GS; Chronakis N; Kanatzidis MG; Trikalitis PN; Tasiopoulos AJ
    Inorg Chem; 2011 Nov; 50(22):11297-9. PubMed ID: 22010964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium complexation in an aluminium metal-organic framework and its application in alcohol oxidation catalysis.
    Carson F; Agrawal S; Gustafsson M; Bartoszewicz A; Moraga F; Zou X; Martín-Matute B
    Chemistry; 2012 Nov; 18(48):15337-44. PubMed ID: 23042715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials.
    Banerjee M; Das S; Yoon M; Choi HJ; Hyun MH; Park SM; Seo G; Kim K
    J Am Chem Soc; 2009 Jun; 131(22):7524-5. PubMed ID: 19438178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous metal-organic framework with coordinatively unsaturated Mn(II) sites:sorption properties for various gases.
    Moon HR; Kobayashi N; Suh MP
    Inorg Chem; 2006 Oct; 45(21):8672-6. PubMed ID: 17029378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen adsorption in an interpenetrated dynamic metal-organic framework.
    Chen B; Ma S; Zapata F; Lobkovsky EB; Yang J
    Inorg Chem; 2006 Jul; 45(15):5718-20. PubMed ID: 16841969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative investigation of H(2) adsorption strength in Cd- and Zn-based metal organic framework-5.
    Srepusharawoot P; Araújo CM; Blomqvist A; Scheicher RH; Ahuja R
    J Chem Phys; 2008 Oct; 129(16):164104. PubMed ID: 19045244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.