These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 19678920)

  • 1. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin.
    Almén MS; Nordström KJ; Fredriksson R; Schiöth HB
    BMC Biol; 2009 Aug; 7():50. PubMed ID: 19678920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topology based identification and comprehensive classification of four-transmembrane helix containing proteins (4TMs) in the human genome.
    Attwood MM; Krishnan A; Pivotti V; Yazdi S; Almén MS; Schiöth HB
    BMC Genomics; 2016 Mar; 17():268. PubMed ID: 27030248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of α-helical membrane proteins using predicted helix architectures.
    Neumann S; Fuchs A; Hummel B; Frishman D
    PLoS One; 2013; 8(10):e77491. PubMed ID: 24204844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current status of membrane protein structure classification.
    Neumann S; Fuchs A; Mulkidjanian A; Frishman D
    Proteins; 2010 May; 78(7):1760-73. PubMed ID: 20186977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of membrane protein structure databases.
    Shimizu K; Cao W; Saad G; Shoji M; Terada T
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1077-1091. PubMed ID: 29331638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the human membrane proteome.
    Fagerberg L; Jonasson K; von Heijne G; Uhlén M; Berglund L
    Proteomics; 2010 Mar; 10(6):1141-9. PubMed ID: 20175080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helix packing moments reveal diversity and conservation in membrane protein structure.
    Liu W; Eilers M; Patel AB; Smith SO
    J Mol Biol; 2004 Mar; 337(3):713-29. PubMed ID: 15019789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of the human proteome.
    Müller A; MacCallum RM; Sternberg MJ
    Genome Res; 2002 Nov; 12(11):1625-41. PubMed ID: 12421749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb).
    Orfanoudaki G; Economou A
    Mol Cell Proteomics; 2014 Dec; 13(12):3674-87. PubMed ID: 25210196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide functional classification and identification of prokaryotic transmembrane proteins by transmembrane topology similarity comparison.
    Arai M; Okumura K; Satake M; Shimizu T
    Protein Sci; 2004 Aug; 13(8):2170-83. PubMed ID: 15273311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing function and structure between entire proteomes.
    Liu J; Rost B
    Protein Sci; 2001 Oct; 10(10):1970-9. PubMed ID: 11567088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A guideline to proteome-wide α-helical membrane protein topology predictions.
    Tsirigos KD; Hennerdal A; Käll L; Elofsson A
    Proteomics; 2012 Aug; 12(14):2282-94. PubMed ID: 22685073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins.
    Garrow AG; Agnew A; Westhead DR
    BMC Bioinformatics; 2005 Mar; 6():56. PubMed ID: 15769290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary trace annotation of protein function in the structural proteome.
    Erdin S; Ward RM; Venner E; Lichtarge O
    J Mol Biol; 2010 Mar; 396(5):1451-73. PubMed ID: 20036248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity.
    Milanesi L; Petrillo M; Sepe L; Boccia A; D'Agostino N; Passamano M; Di Nardo S; Tasco G; Casadio R; Paolella G
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S20. PubMed ID: 16351747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of transmembrane alpha-helical segments with environmental profiles.
    Efremov RG; Vergoten G
    Protein Eng; 1996 Mar; 9(3):253-63. PubMed ID: 8736492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-interaction of transmembrane helices representing pre-clusters from the human single-span membrane proteins.
    Kirrbach J; Krugliak M; Ried CL; Pagel P; Arkin IT; Langosch D
    Bioinformatics; 2013 Jul; 29(13):1623-30. PubMed ID: 23640719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints.
    Fredriksson R; Lagerström MC; Lundin LG; Schiöth HB
    Mol Pharmacol; 2003 Jun; 63(6):1256-72. PubMed ID: 12761335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human transmembrane proteome.
    Dobson L; Reményi I; Tusnády GE
    Biol Direct; 2015 May; 10():31. PubMed ID: 26018427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria.
    Anantharaman V; Aravind L
    BMC Genomics; 2003 Aug; 4(1):34. PubMed ID: 12914674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.