BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19679153)

  • 1. Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics.
    Nagata S; Pastan I
    Adv Drug Deliv Rev; 2009 Sep; 61(11):977-85. PubMed ID: 19679153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of B-cell epitopes for decreasing immunogenicity in recombinant immunotoxin against B-cell malignancies.
    Hu X; Zhang M; Zhang C; Long S; Wang W; Yin W; Cao Z
    J BUON; 2016; 21(6):1374-1378. PubMed ID: 28039694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes.
    Onda M; Beers R; Xiang L; Lee B; Weldon JE; Kreitman RJ; Pastan I
    Proc Natl Acad Sci U S A; 2011 Apr; 108(14):5742-7. PubMed ID: 21436054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design of low immunogenic anti CD25 recombinant immunotoxin for T cell malignancies by elimination of T cell epitopes in PE38.
    Mazor R; Kaplan G; Park D; Jang Y; Lee F; Kreitman R; Pastan I
    Cell Immunol; 2017 Mar; 313():59-66. PubMed ID: 28087047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunotoxins with decreased immunogenicity and improved activity.
    Pastan I; Onda M; Weldon J; Fitzgerald D; Kreitman R
    Leuk Lymphoma; 2011 Jun; 52 Suppl 2(Suppl 2):87-90. PubMed ID: 21504287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes.
    Liu W; Onda M; Lee B; Kreitman RJ; Hassan R; Xiang L; Pastan I
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11782-7. PubMed ID: 22753489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual B- and T-cell de-immunization of recombinant immunotoxin targeting mesothelin with high cytotoxic activity.
    Mazor R; Onda M; Park D; Addissie S; Xiang L; Zhang J; Hassan R; Pastan I
    Oncotarget; 2016 May; 7(21):29916-26. PubMed ID: 27167198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display.
    Salvatore G; Beers R; Margulies I; Kreitman RJ; Pastan I
    Clin Cancer Res; 2002 Apr; 8(4):995-1002. PubMed ID: 11948105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunotoxins in cancer therapy: Review and update.
    Akbari B; Farajnia S; Ahdi Khosroshahi S; Safari F; Yousefi M; Dariushnejad H; Rahbarnia L
    Int Rev Immunol; 2017 Jul; 36(4):207-219. PubMed ID: 28282218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T and B cell epitope analysis for the immunogenicity evaluation and mitigation of antibody-based therapeutics.
    Sun R; Qian MG; Zhang X
    MAbs; 2024; 16(1):2324836. PubMed ID: 38512798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies to Reduce the Immunogenicity of Recombinant Immunotoxins.
    Mazor R; King EM; Pastan I
    Am J Pathol; 2018 Aug; 188(8):1736-1743. PubMed ID: 29870741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin.
    Ho M; Kreitman RJ; Onda M; Pastan I
    J Biol Chem; 2005 Jan; 280(1):607-17. PubMed ID: 15491997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the immunogenicity of protein therapeutics.
    Onda M
    Curr Drug Targets; 2009 Feb; 10(2):131-9. PubMed ID: 19199909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization algorithms for functional deimmunization of therapeutic proteins.
    Parker AS; Zheng W; Griswold KE; Bailey-Kellogg C
    BMC Bioinformatics; 2010 Apr; 11():180. PubMed ID: 20380721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads.
    Salvat RS; Choi Y; Bishop A; Bailey-Kellogg C; Griswold KE
    Biotechnol Bioeng; 2015 Jul; 112(7):1306-18. PubMed ID: 25655032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxic activity of disulfide-stabilized recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) toward fresh malignant cells from patients with B-cell leukemias.
    Kreitman RJ; Margulies I; Stetler-Stevenson M; Wang QC; FitzGerald DJ; Pastan I
    Clin Cancer Res; 2000 Apr; 6(4):1476-87. PubMed ID: 10778980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Deimmunization of Interferon Beta-1b by Identifying and Silencing Human T Cells Epitopes.
    Moradi Hasan-Abad A; Adabi E; Sadroddiny E; Khorramizadeh MR; Mazlomi MA; Mehravar S; Kardar GA
    Iran J Allergy Asthma Immunol; 2019 Aug; 18(4):427-440. PubMed ID: 31522451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of HLA-DP in the Presentation of Epitopes from the Truncated Bacterial PE38 Immunotoxin.
    Mazor R; Addissie S; Jang Y; Tai CH; Rose J; Hakim F; Pastan I
    AAPS J; 2017 Jan; 19(1):117-129. PubMed ID: 27796910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies.
    Kreitman RJ
    BioDrugs; 2009; 23(1):1-13. PubMed ID: 19344187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.
    Choi Y; Verma D; Griswold KE; Bailey-Kellogg C
    Methods Mol Biol; 2017; 1529():375-398. PubMed ID: 27914063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.