These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19679316)

  • 1. Ratiometric pH-nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative.
    Doussineau T; Trupp S; Mohr GJ
    J Colloid Interface Sci; 2009 Nov; 339(1):266-70. PubMed ID: 19679316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles.
    Gao F; Tang L; Dai L; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):517-21. PubMed ID: 16965933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing.
    Lapresta-Fernández A; Doussineau T; Dutz S; Steiniger F; Moro AJ; Mohr GJ
    Nanotechnology; 2011 Oct; 22(41):415501. PubMed ID: 21926455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organizing core-shell nanostructures: spontaneous accumulation of dye in the core of doped silica nanoparticles.
    Rampazzo E; Bonacchi S; Montalti M; Prodi L; Zaccheroni N
    J Am Chem Soc; 2007 Nov; 129(46):14251-6. PubMed ID: 17958420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel pH indicator dyes for array preparation via NHS ester activation or solid-phase organic synthesis.
    Trupp S; Hoffmann P; Henkel T; Mohr GJ
    Org Biomol Chem; 2008 Dec; 6(23):4319-22. PubMed ID: 19005590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organized fluorescent nanosensors for ratiometric Pb2+ detection.
    Arduini M; Mancin F; Tecilla P; Tonellato U
    Langmuir; 2007 Jul; 23(16):8632-6. PubMed ID: 17592862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayer-functionalized microfluidics devices for optical sensing of acidity.
    Mela P; Onclin S; Goedbloed MH; Levi S; Garcia-Parajo MF; van Hulst NF; Ravoo BJ; Reinhoudt DN; van den Berg A
    Lab Chip; 2005 Feb; 5(2):163-70. PubMed ID: 15672130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis and characterization of three kinds of thiol-organosilica nanoparticles.
    Nakamura M; Ishimura K
    Langmuir; 2008 May; 24(9):5099-108. PubMed ID: 18366224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies.
    Srivastava P; Tavernaro I; Scholtz L; Genger C; Welker P; Schreiber F; Meyer K; Resch-Genger U
    Sci Rep; 2023 Jan; 13(1):1321. PubMed ID: 36693888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing proteins with luminescent silica nanoparticles.
    Latterini L; Amelia M
    Langmuir; 2009 Apr; 25(8):4767-73. PubMed ID: 19260659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH- and photo-switched release of guest molecules from mesoporous silica supports.
    Aznar E; Marcos MD; Martínez-Máñez R; Sancenón F; Soto J; Amorós P; Guillem C
    J Am Chem Soc; 2009 May; 131(19):6833-43. PubMed ID: 19402643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric pH sensor based on mesoporous silica nanoparticles and Förster resonance energy transfer.
    Lei J; Wang L; Zhang J
    Chem Commun (Camb); 2010 Nov; 46(44):8445-7. PubMed ID: 20886155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wide pH range optical sensing system based on a sol-gel encapsulated amino-functionalized corrole.
    Li CY; Zhang XB; Han ZX; Akermark B; Sun L; Shen GL; Yu RQ
    Analyst; 2006 Mar; 131(3):388-93. PubMed ID: 16496047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent layer-by-layer assembled superhydrophobic organic-inorganic hybrid films.
    Amigoni S; Taffin de Givenchy E; Dufay M; Guittard F
    Langmuir; 2009 Sep; 25(18):11073-7. PubMed ID: 19601564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ratiometric fluorescence sensor with broad dynamic range based on two pH-sensitive fluorophores.
    Niu CG; Gui XQ; Zeng GM; Yuan XZ
    Analyst; 2005 Nov; 130(11):1551-6. PubMed ID: 16222379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton "off-on" behaviour of methylpiperazinyl derivative of naphthalimide: a pH sensor based on fluorescence enhancement.
    Niu CG; Zeng GM; Chen LX; Shen GL; Yu RQ
    Analyst; 2004 Jan; 129(1):20-4. PubMed ID: 14737578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-controllable synthesis of monodispersed colloidal silica nanoparticles via hydrolysis of elemental silicon.
    Guo J; Liu X; Cheng Y; Li Y; Xu G; Cui P
    J Colloid Interface Sci; 2008 Oct; 326(1):138-42. PubMed ID: 18674771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole by using silver nanoparticles as bridges and carriers.
    Tan SZ; Hu YJ; Gong FC; Cao Z; Xia JY; Zhang L
    Anal Chim Acta; 2009 Mar; 636(2):205-9. PubMed ID: 19264169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-fluorophore Raspberry-like Nanohybrids for Ratiometric pH Sensing.
    Acquah I; Roh J; Ahn DJ
    Chem Asian J; 2017 Jul; 12(14):1724-1729. PubMed ID: 28503913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naphthalimide modified rhodamine derivative: ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches.
    Zhang JF; Zhou Y; Yoon J; Kim Y; Kim SJ; Kim JS
    Org Lett; 2010 Sep; 12(17):3852-5. PubMed ID: 20687592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.