BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19679822)

  • 1. Endocytic trafficking from the small intestinal brush border probed with FM dye.
    Hansen GH; Rasmussen K; Niels-Christiansen LL; Danielsen EM
    Am J Physiol Gastrointest Liver Physiol; 2009 Oct; 297(4):G708-15. PubMed ID: 19679822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface.
    Danielsen EM
    Histochem Cell Biol; 2015 May; 143(5):545-56. PubMed ID: 25526697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border: Two separate pathways into the enterocyte.
    Michael Danielsen E; Hansen GH
    Biochim Biophys Acta; 2016 Feb; 1858(2):233-43. PubMed ID: 26615917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.
    Danielsen EM; Hansen GH
    PLoS One; 2013; 8(10):e76661. PubMed ID: 24124585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes.
    Hansen GH; Pedersen J; Niels-Christiansen LL; Immerdal L; Danielsen EM
    Biochem J; 2003 Jul; 373(Pt 1):125-32. PubMed ID: 12689332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary cholesterol induces trafficking of intestinal Niemann-Pick Type C1 Like 1 from the brush border to endosomes.
    Skov M; Tønnesen CK; Hansen GH; Danielsen EM
    Am J Physiol Gastrointest Liver Physiol; 2011 Jan; 300(1):G33-40. PubMed ID: 21051527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Staphylococcus aureus enterotoxins A- and B: binding to the enterocyte brush border and uptake by perturbation of the apical endocytic membrane traffic.
    Danielsen EM; Hansen GH; Karlsdóttir E
    Histochem Cell Biol; 2013 Apr; 139(4):513-24. PubMed ID: 23180309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens.
    Hansen GH; Pedersen ED; Immerdal L; Niels-Christiansen LL; Danielsen EM
    Am J Physiol Gastrointest Liver Physiol; 2005 Dec; 289(6):G1100-7. PubMed ID: 16081758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane.
    Hansen GH; Rasmussen K; Niels-Christiansen LL; Danielsen EM
    Mol Membr Biol; 2011 Feb; 28(2):136-44. PubMed ID: 21166483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal alkaline phosphatase: selective endocytosis from the enterocyte brush border during fat absorption.
    Hansen GH; Niels-Christiansen LL; Immerdal L; Nystrøm BT; Danielsen EM
    Am J Physiol Gastrointest Liver Physiol; 2007 Dec; 293(6):G1325-32. PubMed ID: 17947448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism.
    Hansen GH; Dalskov SM; Rasmussen CR; Immerdal L; Niels-Christiansen LL; Danielsen EM
    Biochemistry; 2005 Jan; 44(3):873-82. PubMed ID: 15654743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid raft organization and function in brush borders of epithelial cells.
    Danielsen EM; Hansen GH
    Mol Membr Biol; 2006; 23(1):71-9. PubMed ID: 16611582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galectin-2 at the enterocyte brush border of the small intestine.
    Thomsen MK; Hansen GH; Danielsen EM
    Mol Membr Biol; 2009 Aug; 26(5):347-55. PubMed ID: 19657968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelectin: a novel lipid raft-associated protein in the enterocyte brush border.
    Wrackmeyer U; Hansen GH; Seya T; Danielsen EM
    Biochemistry; 2006 Aug; 45(30):9188-97. PubMed ID: 16866365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycol chitosan: A stabilizer of lipid rafts in the intestinal brush border.
    Danielsen ET; Danielsen EM
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):360-367. PubMed ID: 28034633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system.
    Danielsen EM; Hansen GH
    Tissue Barriers; 2017 Jul; 5(3):e1361900. PubMed ID: 28837408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of cell-penetrating peptides (CPPs) melittin and Hiv-1 Tat on the enterocyte brush border using a mucosal explant system.
    Danielsen EM; Hansen GH
    Biochim Biophys Acta Biomembr; 2018 Aug; 1860(8):1589-1599. PubMed ID: 29856994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Okadaic acid: a rapid inducer of lamellar bodies in small intestinal enterocytes.
    Danielsen EM; Hansen GH; Severinsen MC
    Toxicon; 2014 Sep; 88():77-87. PubMed ID: 24951872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular localization and endocytosis of brush border enzymes in the enterocyte-like cell line Caco-2.
    Klumperman J; Boekestijn JC; Mulder AM; Fransen JA; Ginsel LA
    Eur J Cell Biol; 1991 Feb; 54(1):76-84. PubMed ID: 1674471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast dynamin-like protein Vps1:vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton.
    Nannapaneni S; Wang D; Jain S; Schroeder B; Highfill C; Reustle L; Pittsley D; Maysent A; Moulder S; McDowell R; Kim K
    Eur J Cell Biol; 2010 Jul; 89(7):499-508. PubMed ID: 20189679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.