These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19680580)

  • 1. Microrheology with optical tweezers.
    Yao A; Tassieri M; Padgett M; Cooper J
    Lab Chip; 2009 Sep; 9(17):2568-75. PubMed ID: 19680580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using optical tweezers for the characterization of polyelectrolyte solutions with very low viscoelasticity.
    Pommella A; Preziosi V; Caserta S; Cooper JM; Guido S; Tassieri M
    Langmuir; 2013 Jul; 29(29):9224-30. PubMed ID: 23786307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications.
    Robertson-Anderson RM
    ACS Macro Lett; 2018 Aug; 7(8):968-975. PubMed ID: 35650960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Halo: A Proof of Concept for a New Broadband Microrheology Tool.
    Ramírez J; Gibson GM; Tassieri M
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear microrheology with optical tweezers of living cells 'is not an option'!
    Tassieri M
    Soft Matter; 2015 Aug; 11(29):5792-8. PubMed ID: 26100967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive and Active Microrheology for Biomedical Systems.
    Mao Y; Nielsen P; Ali J
    Front Bioeng Biotechnol; 2022; 10():916354. PubMed ID: 35866030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active microrheology and simultaneous visualization of sheared phospholipid monolayers.
    Choi SQ; Steltenkamp S; Zasadzinski JA; Squires TM
    Nat Commun; 2011; 2():312. PubMed ID: 21587229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microrheology with optical tweezers: measuring the relative viscosity of solutions 'at a glance'.
    Tassieri M; Del Giudice F; Robertson EJ; Jain N; Fries B; Wilson R; Glidle A; Greco F; Netti PA; Maffettone PL; Bicanic T; Cooper JM
    Sci Rep; 2015 Mar; 5():8831. PubMed ID: 25743468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of interfacial viscoelasticity in stability and conformation of biomolecular organizates at air/fluid interface.
    Antony M S; Jaganathan M; Dhathathreyan A
    Adv Colloid Interface Sci; 2016 Aug; 234():80-88. PubMed ID: 27174489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Microrheology in Food Science.
    Yang N; Lv R; Jia J; Nishinari K; Fang Y
    Annu Rev Food Sci Technol; 2017 Feb; 8():493-521. PubMed ID: 28125345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in the microrheology of complex fluids.
    Waigh TA
    Rep Prog Phys; 2016 Jul; 79(7):074601. PubMed ID: 27245584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully angularly resolved 3D microrheology with optical tweezers.
    Matheson AB; Mendonca T; Smith MG; Sutcliffe B; Fernandez AJ; Paterson L; Dalgarno PA; Wright AJ; Tassieri M
    Rheol Acta; 2024; 63(3):205-217. PubMed ID: 38440195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-microrheology: a frontier in microrheology.
    Weihs D; Mason TG; Teitell MA
    Biophys J; 2006 Dec; 91(11):4296-305. PubMed ID: 16963507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.
    Lin J; Valentine MT
    Rev Sci Instrum; 2012 May; 83(5):053905. PubMed ID: 22667631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy.
    Raj S; Wojdyla M; Petrov D
    Cell Biochem Biophys; 2013 Apr; 65(3):347-61. PubMed ID: 23080020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. XPCS Microrheology and Rheology of Sterically Stabilized Nanoparticle Dispersions in Aprotic Solvents.
    Liu W; Zheng B; Yin X; Yu X; Zhang Y; Wiegart L; Fluerasu A; Armstrong BL; Veith GM; Bhatia SR
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14267-14274. PubMed ID: 33724788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Viscoelastic Properties Using Helical Magnetic Nanopropellers.
    Ghosh A; Ghosh A
    Trans Indian Natl Acad Eng; 2021 Jun; 6():429-438. PubMed ID: 35966905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal evolution of viscoelasticity of soft colloid laden air-water interface: a multiple mode microrheology study.
    Jose M; Lokesh M; Vaippully R; Satapathy DK; Roy B
    RSC Adv; 2022 Apr; 12(21):12988-12996. PubMed ID: 35497011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.