These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 19680657)
1. Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Vanjildorj E; Song SY; Yang ZH; Choi JE; Noh YS; Park S; Lim WJ; Cho KM; Yun HD; Lim YP Plant Cell Rep; 2009 Oct; 28(10):1581-91. PubMed ID: 19680657 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of the Brassica rapa transcription factor WRKY12 results in reduced soft rot symptoms caused by Pectobacterium carotovorum in Arabidopsis and Chinese cabbage. Kim HS; Park YH; Nam H; Lee YM; Song K; Choi C; Ahn I; Park SR; Lee YH; Hwang DJ Plant Biol (Stuttg); 2014 Sep; 16(5):973-81. PubMed ID: 24552622 [TBL] [Abstract][Full Text] [Related]
3. Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Ban H; Chai X; Lin Y; Zhou Y; Peng D; Zhou Y; Zou Y; Yu Z; Sun M Plant Cell Rep; 2009 Dec; 28(12):1847-55. PubMed ID: 19898849 [TBL] [Abstract][Full Text] [Related]
4. Over-expression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage. Park YH; Choi C; Park EM; Kim HS; Park HJ; Bae SC; Ahn I; Kim MG; Park SR; Hwang DJ Plant Cell Rep; 2012 Oct; 31(10):1845-50. PubMed ID: 22717673 [TBL] [Abstract][Full Text] [Related]
5. Fusion of the genes for AHL-lactonase and S-layer protein in Bacillus thuringiensis increases its ability to inhibit soft rot caused by Erwinia carotovora. Zhang L; Ruan L; Hu C; Wu H; Chen S; Yu Z; Sun M Appl Microbiol Biotechnol; 2007 Mar; 74(3):667-75. PubMed ID: 17216466 [TBL] [Abstract][Full Text] [Related]
6. Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis). Saha G; Park JI; Ahmed NU; Kayum MA; Kang KK; Nou IS Plant Physiol Biochem; 2016 Jul; 104():200-15. PubMed ID: 27038155 [TBL] [Abstract][Full Text] [Related]
7. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Wang Y; Wu F; Bai J; He Y Plant Biotechnol J; 2014 Apr; 12(3):312-21. PubMed ID: 24237584 [TBL] [Abstract][Full Text] [Related]
8. DNA Methylation Level Changes in Transgenic Chinese Cabbage ( Park JS; Shin YH; Park YD Genes (Basel); 2021 Sep; 12(10):. PubMed ID: 34680957 [TBL] [Abstract][Full Text] [Related]
9. Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Cho HS; Cao J; Ren JP; Earle ED Plant Cell Rep; 2001 Jan; 20(1):1-7. PubMed ID: 30759906 [TBL] [Abstract][Full Text] [Related]
10. Identification and Validation of Genetic Variations in Transgenic Chinese Cabbage Plants ( Kim SJ; Park JS; Shin YH; Park YD Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33922022 [TBL] [Abstract][Full Text] [Related]
11. Ectopic expression of nucleolar DEAD-Box RNA helicase OsTOGR1 confers improved heat stress tolerance in transgenic Chinese cabbage. Yarra R; Xue Y Plant Cell Rep; 2020 Dec; 39(12):1803-1814. PubMed ID: 32995946 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Wang F; Qiu N; Ding Q; Li J; Zhang Y; Li H; Gao J BMC Genomics; 2014 Sep; 15(1):807. PubMed ID: 25242257 [TBL] [Abstract][Full Text] [Related]
13. L-Cysteine Increases the Transformation Efficiency of Chinese Cabbage ( Sivanandhan G; Moon J; Sung C; Bae S; Yang ZH; Jeong SY; Choi SR; Kim SG; Lim YP Front Plant Sci; 2021; 12():767140. PubMed ID: 34764973 [TBL] [Abstract][Full Text] [Related]
14. Occurrence, Characteristics, and PCR-Based Detection of Chen C; Li X; Bo Z; Du W; Fu L; Tian Y; Cui S; Shi Y; Xie H Plant Dis; 2021 Oct; 105(10):2880-2887. PubMed ID: 33834854 [TBL] [Abstract][Full Text] [Related]
15. Response of Chinese cabbage ( Li X; Ren X; Ibrahim E; Kong H; Wang M; Xia J; Wang H; Shou L; Zhou T; Li B; Yan J Front Microbiol; 2024; 15():1401896. PubMed ID: 38784798 [TBL] [Abstract][Full Text] [Related]
16. N-Acyl homoserine lactonase promotes prevention of Erwinia virulence with zwittermicin A-producing strain Bacillus cereus. Zhao C; Zeng H; Yu Z; Sun M Biotechnol Bioeng; 2008 Jun; 100(3):599-603. PubMed ID: 18438870 [TBL] [Abstract][Full Text] [Related]
17. BrSKS13, a multiple-allele-inherited male sterility-related gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis), affects pollen development and pollination/fertilization process. Ji R; Ge W; Wang H; Zhao Y; Feng H Gene; 2019 May; 696():113-121. PubMed ID: 30776462 [TBL] [Abstract][Full Text] [Related]
19. Attenuation of Quorum Sensing Regulated Virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL Lactonase Produced by Lysinibacillus sp. Gs50. Garge SS; Nerurkar AS PLoS One; 2016; 11(12):e0167344. PubMed ID: 27911925 [TBL] [Abstract][Full Text] [Related]
20. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis. Ouyang LJ; Li LM Transgenic Res; 2016 Aug; 25(4):441-52. PubMed ID: 26905275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]