These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 19680657)
21. ANALYSIS OF GENOMIC DNA METHYLATION AND GENE EXPRESSION IN CHINESE CABBAGE (Brassica rapa L. ssp. pekinensis) AFTER CONTINUOUS SEEDLING BREEDING. Tao L; Wang XL; Guo MH; Zhang YW Genetika; 2015 Aug; 51(8):905-14. PubMed ID: 26601490 [TBL] [Abstract][Full Text] [Related]
22. Natural variation in a calreticulin gene causes reduced resistance to Ca Su T; Li P; Wang H; Wang W; Zhao X; Yu Y; Zhang D; Yu S; Zhang F Plant Cell Environ; 2019 Nov; 42(11):3044-3060. PubMed ID: 31301234 [TBL] [Abstract][Full Text] [Related]
23. Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Sakamoto K; Saito A; Hayashida N; Taguchi G; Matsumoto E Theor Appl Genet; 2008 Sep; 117(5):759-67. PubMed ID: 18612625 [TBL] [Abstract][Full Text] [Related]
24. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Dong YH; Zhang XF; Xu JL; Zhang LH Appl Environ Microbiol; 2004 Feb; 70(2):954-60. PubMed ID: 14766576 [TBL] [Abstract][Full Text] [Related]
25. Hairy root transformation of Brassica rapa with bacterial halogenase genes and regeneration to adult plants to modify production of indolic compounds. Neumann M; Prahl S; Caputi L; Hill L; Kular B; Walter A; Patallo EP; Milbredt D; Aires A; Schöpe M; O'Connor S; van Pée KH; Ludwig-Müller J Phytochemistry; 2020 Jul; 175():112371. PubMed ID: 32283438 [TBL] [Abstract][Full Text] [Related]
26. Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress. Eom SH; Baek SA; Kim JK; Hyun TK Molecules; 2018 May; 23(5):. PubMed ID: 29762546 [TBL] [Abstract][Full Text] [Related]
27. The Kim NS; Kim SJ; Jo JS; Lee JG; Lee SI; Kim DH; Kim JA Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828270 [TBL] [Abstract][Full Text] [Related]
28. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. Song MF; Zhang S; Hou P; Shang HZ; Gu HK; Li JJ; Xiao Y; Guo L; Su L; Gao JW; Yang JP Plant Mol Biol; 2015 Apr; 87(6):633-43. PubMed ID: 25724426 [TBL] [Abstract][Full Text] [Related]
29. Changes in endogenous phytohormones regulated by microRNA-target mRNAs contribute to the development of Dwarf Autotetraploid Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Wang Y; Huang S; Liu Z; Tang X; Feng H Mol Genet Genomics; 2018 Dec; 293(6):1535-1546. PubMed ID: 30116946 [TBL] [Abstract][Full Text] [Related]
30. Transgenic plants expressing the quorum quenching lactonase AttM do not significantly alter root-associated bacterial populations. D'Angelo-Picard C; Chapelle E; Ratet P; Faure D; Dessaux Y Res Microbiol; 2011 Nov; 162(9):951-8. PubMed ID: 21315818 [TBL] [Abstract][Full Text] [Related]
31. Resistance to white rust in pak choi and Chinese cabbage at the cotyledon stage. Santos MR; Dias JS; Silva MJ; Ferreira-Pinto MM Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):963-71. PubMed ID: 17390845 [TBL] [Abstract][Full Text] [Related]
32. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T-DNA. Yu JG; Lee GH; Kim JS; Shim EJ; Park YD Mol Cells; 2010 Mar; 29(3):267-75. PubMed ID: 20195907 [TBL] [Abstract][Full Text] [Related]
33. Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae. Toth IK; Newton JA; Hyman LJ; Lees AK; Daykin M; Ortori C; Williams P; Fray RG Mol Plant Microbe Interact; 2004 Aug; 17(8):880-7. PubMed ID: 15305609 [TBL] [Abstract][Full Text] [Related]
34. Ectopic expression of a Brassica rapa AINTEGUMENTA gene (BrANT-1) increases organ size and stomatal density in Arabidopsis. Ding Q; Cui B; Li J; Li H; Zhang Y; Lv X; Qiu N; Liu L; Wang F; Gao J Sci Rep; 2018 Jul; 8(1):10528. PubMed ID: 30002453 [TBL] [Abstract][Full Text] [Related]
35. CRISPR/Cas9-Mediated Mutagenesis of Shin YH; Park YD Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613993 [TBL] [Abstract][Full Text] [Related]
36. Construction of pseudomolecule sequences of Brassica rapa ssp. pekinensis inbred line CT001 and analysis of spontaneous mutations derived via sexual propagation. Park JS; Park JH; Park YD PLoS One; 2019; 14(9):e0222283. PubMed ID: 31498838 [TBL] [Abstract][Full Text] [Related]
37. HTT2 promotes plant thermotolerance in Brassica rapa. Jiang J; Bai J; Li S; Li X; Yang L; He Y BMC Plant Biol; 2018 Jun; 18(1):127. PubMed ID: 29925322 [TBL] [Abstract][Full Text] [Related]
38. [Identification of soft rot pathogens on Chinese cabbage [Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee] in Beijing]. Hu N; Li C; Wang Q; Shao J; Liu Y; Zhao L; Ma R; Xie H Wei Sheng Wu Xue Bao; 2015 Oct; 55(10):1253-63. PubMed ID: 26939453 [TBL] [Abstract][Full Text] [Related]
39. An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis). Xu H; Wang X; Zhao H; Liu F Plant Cell Rep; 2008 Aug; 27(8):1369-76. PubMed ID: 18542966 [TBL] [Abstract][Full Text] [Related]
40. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis). Huang XY; Tao P; Li BY; Wang WH; Yue ZC; Lei JL; Zhong XM Genet Mol Res; 2015 Mar; 14(1):2189-204. PubMed ID: 25867366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]