BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 19680701)

  • 1. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure.
    Julkunen P; Wilson W; Jurvelin JS; Rieppo J; Qu CJ; Lammi MJ; Korhonen RK
    J Biomech; 2008; 41(9):1978-86. PubMed ID: 18490021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical properties of human articular cartilage under compressive loads.
    Boschetti F; Pennati G; Gervaso F; Peretti GM; Dubini G
    Biorheology; 2004; 41(3-4):159-66. PubMed ID: 15299249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis.
    Lu XL; Wan LQ; Guo XE; Mow VC
    J Biomech; 2010 Mar; 43(4):673-9. PubMed ID: 19896670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression.
    Shirazi R; Shirazi-Adl A; Hurtig M
    J Biomech; 2008 Dec; 41(16):3340-8. PubMed ID: 19022449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.
    Chegini S; Ferguson SJ
    J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition.
    Wilson W; Huyghe JM; van Donkelaar CC
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):43-53. PubMed ID: 16710737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression.
    Li LP; Herzog W; Korhonen RK; Jurvelin JS
    Med Eng Phys; 2005 Jan; 27(1):51-7. PubMed ID: 15604004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.
    Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I
    Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation.
    Lu XL; Miller C; Chen FH; Guo XE; Mow VC
    J Biomech; 2007; 40(11):2434-41. PubMed ID: 17222852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.