These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19680702)

  • 1. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus.
    Soares JS; Rajagopal KR; Moore JE
    Biomech Model Mechanobiol; 2010 Apr; 9(2):177-86. PubMed ID: 19680702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An entropy spring model for the Young's modulus change of biodegradable polymers during biodegradation.
    Wang Y; Han X; Pan J; Sinka C
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):14-21. PubMed ID: 19878898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance.
    Shirazi RN; Aldabbagh F; Ronan W; Erxleben A; Rochev Y; McHugh P
    J Mater Sci Mater Med; 2016 Oct; 27(10):154. PubMed ID: 27590824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive framework for biodegradable polymers with applications to biodegradable stents.
    Soares JS; Moore JE; Rajagopal KR
    ASAIO J; 2008; 54(3):295-301. PubMed ID: 18496280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA.
    Renouf-Glauser AC; Rose J; Farrar DF; Cameron RE
    Biomaterials; 2005 Oct; 26(29):5771-82. PubMed ID: 15949544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration.
    Krynauw H; Bruchmüller L; Bezuidenhout D; Zilla P; Franz T
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):359-68. PubMed ID: 21948379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical study of PLA-PCL fibers during in vitro degradation.
    Vieira AC; Vieira JC; Ferra JM; Magalhães FD; Guedes RM; Marques AT
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):451-60. PubMed ID: 21316633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA.
    Tan HY; Widjaja E; Boey F; Loo SC
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):433-40. PubMed ID: 19489010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in mechanical properties of poly-l-lactic acid mini-plate under functional load simulating sagittal splitting ramus osteotomy.
    Mizuhashi H; Suga K; Uchiyama T; Oda Y
    Int J Oral Maxillofac Surg; 2008 Feb; 37(2):162-9. PubMed ID: 18023560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-degradable poly(β-amino ester) networks with temporally controlled enhancement of mechanical properties.
    Safranski DL; Weiss D; Clark JB; Taylor WR; Gall K
    Acta Biomater; 2014 Aug; 10(8):3475-83. PubMed ID: 24769113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A degradation study of PLLA containing lauric acid.
    Renouf-Glauser AC; Rose J; Farrar D; Cameron RE
    Biomaterials; 2005 May; 26(15):2415-22. PubMed ID: 15585245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for hydrolytic degradation and erosion of biodegradable polymers.
    Sevim K; Pan J
    Acta Biomater; 2018 Jan; 66():192-199. PubMed ID: 29128536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ nanomechanical characterization of the early stages of swelling and degradation of a biodegradable polymer.
    Dumitru AC; Espinosa FM; Garcia R; Foschi G; Tortorella S; Valle F; Dallavalle M; Zerbetto F; Biscarini F
    Nanoscale; 2015 Mar; 7(12):5403-10. PubMed ID: 25727249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite.
    Fang Z; Feng Q
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():190-4. PubMed ID: 24411368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable osteosynthesis material for stabilization of midface fractures: experimental investigation in sheep.
    Bähr W; Stricker A; Gutwald R; Wellens E
    J Craniomaxillofac Surg; 1999 Feb; 27(1):51-7. PubMed ID: 10188128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants.
    Rothen-Weinhold A; Besseghir K; Vuaridel E; Sublet E; Oudry N; Kubel F; Gurny R
    Eur J Pharm Biopharm; 1999 Sep; 48(2):113-21. PubMed ID: 10469929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biodegradable vascularizing membrane: a feasibility study.
    Kaushiva A; Turzhitsky VM; Darmoc M; Backman V; Ameer GA
    Acta Biomater; 2007 Sep; 3(5):631-42. PubMed ID: 17507300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.