These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 19682031)

  • 1. Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability.
    Thomas EA; Reid CA; Petrou S
    Epilepsia; 2010 Jan; 51(1):136-45. PubMed ID: 19682031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography.
    Santhakumar V; Aradi I; Soltesz I
    J Neurophysiol; 2005 Jan; 93(1):437-53. PubMed ID: 15342722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin.
    Thomas EA; Petrou S
    Epilepsia; 2013 Jul; 54(7):1195-202. PubMed ID: 23566163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction by modeling that epilepsy may be caused by very small functional changes in ion channels.
    Thomas EA; Reid CA; Berkovic SF; Petrou S
    Arch Neurol; 2009 Oct; 66(10):1225-32. PubMed ID: 19822777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced but fragile inhibition in the dentate gyrus in vivo in the kainic acid model of temporal lobe epilepsy: a study using current source density analysis.
    Wu K; Leung LS
    Neuroscience; 2001; 104(2):379-96. PubMed ID: 11377842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced excitability in the dentate gyrus network of betaIV-spectrin mutant mice in vivo.
    Winkels R; Jedlicka P; Weise FK; Schultz C; Deller T; Schwarzacher SW
    Hippocampus; 2009 Jul; 19(7):677-86. PubMed ID: 19156852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system.
    Sutula TP; Dudek FE
    Prog Brain Res; 2007; 163():541-63. PubMed ID: 17765737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus.
    Lysetskiy M; Földy C; Soltesz I
    Hippocampus; 2005; 15(6):691-6. PubMed ID: 15986406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in presence and absence of seizure-induced growth.
    Okazaki MM; Molnár P; Nadler JV
    J Neurophysiol; 1999 Apr; 81(4):1645-60. PubMed ID: 10200201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus.
    Spampanato J; Aradi I; Soltesz I; Goldin AL
    J Neurophysiol; 2004 May; 91(5):2040-50. PubMed ID: 14702334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide Y regulates recurrent mossy fiber synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor plasticity.
    Tu B; Jiao Y; Herzog H; Nadler JV
    Neuroscience; 2006 Dec; 143(4):1085-94. PubMed ID: 17027162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged infusion of tetrodotoxin does not block mossy fiber sprouting in pilocarpine-treated rats.
    Buckmaster PS
    Epilepsia; 2004 May; 45(5):452-8. PubMed ID: 15101826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal cell loss and propagation of abnormal discharges accompanied with the expression of tonic convulsion in the spontaneously epileptic rat.
    Hanaya R; Sasa M; Sugata S; Tokudome M; Serikawa T; Kurisu K; Arita K
    Brain Res; 2010 Apr; 1328():171-80. PubMed ID: 20211153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent excitation of granule cells with basal dendrites and low interneuron density and inhibitory postsynaptic current frequency in the dentate gyrus of macaque monkeys.
    Austin JE; Buckmaster PS
    J Comp Neurol; 2004 Aug; 476(3):205-18. PubMed ID: 15269966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitability changes within transverse lamellae of dentate granule cells and their longitudinal spread following orthodromic or antidromic activation.
    Lømo T
    Hippocampus; 2009 Jul; 19(7):633-48. PubMed ID: 19115390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alumina gel injections into the temporal lobe of rhesus monkeys cause complex partial seizures and morphological changes found in human temporal lobe epilepsy.
    Ribak CE; Seress L; Weber P; Epstein CM; Henry TR; Bakay RA
    J Comp Neurol; 1998 Nov; 401(2):266-90. PubMed ID: 9822153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of the R85C and R85H epilepsy mutations in Na+ channel beta1 subunits.
    Thomas EA; Xu R; Petrou S
    Neuroscience; 2007 Jul; 147(4):1034-46. PubMed ID: 17604911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kainic acid-induced mossy fiber sprouting and synapse formation in the dentate gyrus of rats.
    Wenzel HJ; Woolley CS; Robbins CA; Schwartzkroin PA
    Hippocampus; 2000; 10(3):244-60. PubMed ID: 10902894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitation of granule cell epileptiform activity by mossy fiber-released zinc in the pilocarpine model of temporal lobe epilepsy.
    Timofeeva O; Nadler JV
    Brain Res; 2006 Mar; 1078(1):227-34. PubMed ID: 16490181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of increased local excitatory circuits in the hippocampus during epileptogenesis using focal flash photolysis of caged glutamate.
    Shao LR; Dudek FE
    Epilepsia; 2005; 46 Suppl 5():100-6. PubMed ID: 15987262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.