These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 1968229)
1. Interaction between neuropeptide Y and noradrenaline on central catecholamine neurons. Illes P; Regenold JT Nature; 1990 Mar; 344(6261):62-3. PubMed ID: 1968229 [TBL] [Abstract][Full Text] [Related]
2. alpha2-Adrenoceptor-mediated potassium currents in acutely dissociated rat locus coeruleus neurones. Arima J; Kubo C; Ishibashi H; Akaike N J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):57-66. PubMed ID: 9490817 [TBL] [Abstract][Full Text] [Related]
3. Expression of mRNA and functional alpha(1)-adrenoceptors that suppress the GIRK conductance in adult rat locus coeruleus neurons. Osborne PB; Vidovic M; Chieng B; Hill CE; Christie MJ Br J Pharmacol; 2002 Jan; 135(1):226-32. PubMed ID: 11786498 [TBL] [Abstract][Full Text] [Related]
4. Cellular mechanisms of opioid tolerance: studies in single brain neurons. Christie MJ; Williams JT; North RA Mol Pharmacol; 1987 Nov; 32(5):633-8. PubMed ID: 2824980 [TBL] [Abstract][Full Text] [Related]
5. Alpha-2-adrenergic and opioid receptor additivity in rat locus coeruleus neurons. Stone LS; Wilcox GL Neurosci Lett; 2004 May; 361(1-3):265-8. PubMed ID: 15135944 [TBL] [Abstract][Full Text] [Related]
6. Effect of tumor necrosis factor-alpha on the reciprocal G-protein-induced regulation of norepinephrine release by the alpha2-adrenergic receptor. Reynolds JL; Ignatowski TA; Spengler RN J Neurosci Res; 2005 Mar; 79(6):779-87. PubMed ID: 15672410 [TBL] [Abstract][Full Text] [Related]
7. Effects of the central analgesic tramadol and its main metabolite, O-desmethyltramadol, on rat locus coeruleus neurones. Sevcik J; Nieber K; Driessen B; Illes P Br J Pharmacol; 1993 Sep; 110(1):169-76. PubMed ID: 8220877 [TBL] [Abstract][Full Text] [Related]
8. Potassium conductance increased by noradrenaline, opioids, somatostatin, and G-proteins: whole-cell recording from guinea pig submucous neurons. Tatsumi H; Costa M; Schimerlik M; North RA J Neurosci; 1990 May; 10(5):1675-82. PubMed ID: 1970605 [TBL] [Abstract][Full Text] [Related]
10. Modulation by mu-opioid agonists of guanosine-5'-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Traynor JR; Nahorski SR Mol Pharmacol; 1995 Apr; 47(4):848-54. PubMed ID: 7723747 [TBL] [Abstract][Full Text] [Related]
11. Role of alpha and beta adrenoceptors in locus coeruleus stimulation-induced reduction in rapid eye movement sleep in freely moving rats. Mallick BN; Singh S; Pal D Behav Brain Res; 2005 Mar; 158(1):9-21. PubMed ID: 15680190 [TBL] [Abstract][Full Text] [Related]
12. Central noradrenergic neurons: a locus for the functional interplay between alpha-2 adrenoceptors and opiate receptors. Aghajanian GK J Clin Psychiatry; 1982 Jun; 43(6 Pt 2):20-4. PubMed ID: 6282816 [TBL] [Abstract][Full Text] [Related]
13. Sodium ions attenuate the inhibitory effects of neuropeptide Y on norepinephrine release in rat hypothalamus. Tsuda K; Tsuda S; Goldstein M; Masuyama Y Am J Hypertens; 1995 Nov; 8(11):1135-40. PubMed ID: 8554738 [TBL] [Abstract][Full Text] [Related]
14. Differential G-protein activation by alkaloid and peptide opioid agonists in the human neuroblastoma cell line SK-N-BE. Allouche S; Polastron J; Hasbi A; Homburger V; Jauzac P Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):71-8. PubMed ID: 10432302 [TBL] [Abstract][Full Text] [Related]
15. Lack of interaction between orexinergic and alpha2-adrenergic neuronal systems in rat cerebrocortical slices. Hirota K; Kudo M; Tose R; Yoshida H; Kudo T; Kushikata T Neurosci Lett; 2005 Oct; 387(1):49-52. PubMed ID: 16085362 [TBL] [Abstract][Full Text] [Related]
16. Supersensitivity to mu-opioid receptor-mediated inhibition of the adenylyl cyclase pathway involves pertussis toxin-resistant Galpha protein subunits. Mostany R; Díaz A; Valdizán EM; Rodríguez-Muñoz M; Garzón J; Hurlé MA Neuropharmacology; 2008 May; 54(6):989-97. PubMed ID: 18384820 [TBL] [Abstract][Full Text] [Related]
17. Possible involvement of neurons in locus coeruleus in inhibitory effect on glossopharyngeal expiratory activity in a neonatal rat brainstem-spinal cord preparation in vitro. Yamanishi T; Koizumi H; Komaki M; Ishihama K; Adachi T; Enomoto A; Takao K; Iida S; Kogo M Neurosci Res; 2008 Jan; 60(1):2-9. PubMed ID: 18053604 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of locus coeruleus neurons by non-I1/I2-type imidazoline receptors: an in vivo and in vitro electrophysiological study. Ugedo L; Pineda J; Ruiz-Ortega JA; Martín-Ruiz R Br J Pharmacol; 1998 Dec; 125(8):1685-94. PubMed ID: 9886760 [TBL] [Abstract][Full Text] [Related]
19. Single potassium channels opened by opioids in rat locus ceruleus neurons. Miyake M; Christie MJ; North RA Proc Natl Acad Sci U S A; 1989 May; 86(9):3419-22. PubMed ID: 2566172 [TBL] [Abstract][Full Text] [Related]
20. Intracellular GTP gamma S restores the ability of morphine to hyperpolarize rat locus coeruleus neurons after blockade by pertussis toxin. Wang YY; Aghajanian GK Brain Res; 1987 Dec; 436(2):396-401. PubMed ID: 3124929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]